Chapter 1: Problem 10
If set \(\mathrm{A}\) is empty set then \(\mathrm{n}[\mathrm{P}[\mathrm{P}[\mathrm{P}(\mathrm{A})]]]=\ldots \ldots \ldots \ldots\) (a) 6 (b) 16 (c) 2 (d) 4
Chapter 1: Problem 10
If set \(\mathrm{A}\) is empty set then \(\mathrm{n}[\mathrm{P}[\mathrm{P}[\mathrm{P}(\mathrm{A})]]]=\ldots \ldots \ldots \ldots\) (a) 6 (b) 16 (c) 2 (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{X} \cup\\{3,4\\}=\\{1,2,3,4,5,6\\}\) the which of the following is true (a) Smallest set \(\mathrm{X}=\\{1,2,5,6\\}\) (b) Smallest set \(\mathrm{X}=\\{1,2,3,5,6\\}\) (c) Smallest set \(\mathrm{X}=\\{1,2,3,4\\}\) (d) Greatest set \(\mathrm{X}=\\{1,2,3,4\\}\)
For \(\mathrm{n}, \mathrm{m} \in \mathrm{N} \mathrm{n} / \mathrm{m}\) means that \(\mathrm{n}\) is a factor of \(\mathrm{m}\), the relation/is (a) reflexive and symmetric (b) transitive and symmetric (c) reflexive transitive and symmetric (d) reflexive transitive and not symmetric
If \(\mathrm{A}=\\{1,3,5,7,9,11,13,15,17\\}, \mathrm{B}=\\{2,4, \ldots 18\\}\) and \(\mathrm{N}\) is the universal set then \(\mathrm{A}^{\prime} \cup\left(\mathrm{A} \cup\left(\mathrm{B} \cap \mathrm{B}^{\prime}\right)\right.\) ) is (a) \(\mathrm{A}\) (b) B (c) \(A \cup B\) (d) \(\mathrm{N}\)
Let W denotes the words in the English dictionary. Define the relation \(\mathrm{R}\) by \(\mathrm{R}=\\{(\mathrm{x}, \mathrm{y}) \in \mathrm{W} \times \mathrm{W}\) the ward \(\mathrm{x}\) and \(\mathrm{y}\) have at least one letter in common \(\\}\) Then \(R\) is (a) Not reflexive, symmetric and transitive (b) Reflexive, symmetric and not transitive (c) Reflexive, symmetric and transitive (d) Reflexive, not symmetric and transitive
\(\mathrm{A}=\\{(\mathrm{a}, \mathrm{b}) / \mathrm{b}=2 \mathrm{a}-5\\}\) If \((\mathrm{m}, 5)\) and \((6, \mathrm{n})\) are the member of set \(\mathrm{A}\) then \(\mathrm{m}\) and \(\mathrm{n}\) are respectively (a) 5,7 (b) 7,5 (c) 2,3 (d) 5,3
What do you think about this solution?
We value your feedback to improve our textbook solutions.