Chapter 1: Problem 24
If \(A\) and \(B\) are two sets then \(B-(B-A)=\ldots \ldots \ldots\) (a) \((\mathrm{A}-\mathrm{B})-\mathrm{B}\) (b) \(A-(A-B)\) (c) \(\mathrm{A}\) (d) \(\mathrm{B}\)
Chapter 1: Problem 24
If \(A\) and \(B\) are two sets then \(B-(B-A)=\ldots \ldots \ldots\) (a) \((\mathrm{A}-\mathrm{B})-\mathrm{B}\) (b) \(A-(A-B)\) (c) \(\mathrm{A}\) (d) \(\mathrm{B}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe domain of the function \(\mathrm{f}(\mathrm{x})=\left[\sqrt{\\{}-\log _{0.3}(\mathrm{x}-1)\right\\} / \sqrt{ \left.\left\\{-\mathrm{x}^{2}+2 \mathrm{x}+8\right\\}\right]}\) (a) \((2,4)\) (b) \((-2,4)\) (c) \([2,4)\) (d) \([-2,4)\)
For \(\mathrm{n}, \mathrm{m} \in \mathrm{N} \mathrm{n} / \mathrm{m}\) means that \(\mathrm{n}\) is a factor of \(\mathrm{m}\), the relation/is (a) reflexive and symmetric (b) transitive and symmetric (c) reflexive transitive and symmetric (d) reflexive transitive and not symmetric
Let \(\mathrm{f}(\mathrm{x})=[(\mathrm{x} \sin \alpha) /(\mathrm{x}+1)], \mathrm{x} \neq-1 \mathrm{f} \neq \mathrm{I}, \mathrm{f}(\mathrm{x}) \neq 0 .\) Then what values of \(\sin \alpha\) is \(f(f(x))=x\) ? (a) \(\sqrt{3}\) (b) \(\sqrt{2}\) (c) 1 (d) \(-1\)
If \(\mathrm{f}(\mathrm{x})=[\mathrm{x} /(\mathrm{x}-1)], \mathrm{x} \neq 1\) then \(\left(\right.\) fofof \(\ldots \mathrm{f}_{(17 \text { times })}(\mathrm{x})\) is equal to \(\ldots \ldots\) (a) \([x /(x-1)]\) (b) \(x\) (c) \([x /(x-1)]^{17}\) (d) \([17 \mathrm{x} /(\mathrm{x}-1)]\)
If \(n(A)=6\) and \(n(B)=4\) then minimum value of \(n(A-B)\) is (a) 2 (b) 7 (c) 6 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.