The set \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap\left(\mathrm{A} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)^{\prime} \cap \mathrm{C}^{\prime}\) equals (a) \(\mathrm{B} \cap \mathrm{C}^{\prime}\) (b) \(\mathrm{B} \cup \mathrm{C}^{\prime}\) (c) \(\mathrm{A} \cap \mathrm{C}\) (d) \(\mathrm{A} \cup \mathrm{C}\)

Short Answer

Expert verified
The short answer based on the given step-by-step solution is: \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap\left(\mathrm{A}\cap \mathrm{B}' \cap \mathrm{C}'\right)' \cap \mathrm{C}' = \mathrm{B} \cap \mathrm{C}'\)

Step by step solution

01

Apply De Morgan's law

To simplify the expression, apply De Morgan's law to \( (\mathrm{A}\cap \mathrm{B}' \cap \mathrm{C}')' \). This law states that: \( (A \cap B)’ = A’ \cup B’ \). Therefore, we have: \((\mathrm{A}\cap \mathrm{B}' \cap \mathrm{C}')' = (\mathrm{A}')\cup(\mathrm{B}'')\cup(\mathrm{C}'') \) As we know \( P''=P \), the expression becomes: \((\mathrm{A}\cap \mathrm{B}' \cap \mathrm{C}')' = (\mathrm{A}')\cup \mathrm{B} \cup \mathrm{C} \)
02

Distribute the intersection

Now, utilize the distributive property of intersections to simplify further. The distributive property states that: \((A ∩ (B ∪ C)) = (A ∩ B) ∪ (A ∩ C)\). Thus, the given expression is: \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}'\) To distribute the intersection: \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}' = (\mathrm{A}\cap (\mathrm{A}'\cup \mathrm{B}\cup \mathrm{C})\cap \mathrm{C}' )\cup (\mathrm{B}\cap (\mathrm{A}'\cup \mathrm{B}\cup \mathrm{C})\cap \mathrm{C}' )\cup (\mathrm{C}\cap (\mathrm{A}'\cup \mathrm{B}\cup \mathrm{C})\cap \mathrm{C}' )\).
03

Simplify with set properties

We will now use several set properties to simplify the expression. The properties are: 1. \(A \cap A’ = ∅\) 2. \(A \cap ∅ = ∅\) 3. \(A \cap B = B \cap A\) 4. \(A \cap (B ∪ C) = (A ∩ B) ∪ (A ∩ C)\) Apply these properties to the expression: \((\mathrm{A} \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}') = ∅ \) \((\mathrm{B} \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}') = (\mathrm{B} \cap \mathrm{A}') \cup (\mathrm{B}\cap\mathrm{B})\cup (\mathrm{B} \cap \mathrm{C})\cap \mathrm{C'\) ) Following set properties 1 and 2: \((\mathrm{B} \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}') = (\mathrm{B} \cap \mathrm{A}') \cup ∅ \cup (\mathrm{B} \cap \mathrm{C}\cap \mathrm{C'})\) This simplifies to: \((\mathrm{B} \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}') = (\mathrm{B} \cap \mathrm{A}') \) \((\mathrm{C}\cap (\mathrm{A}'\cup \mathrm{B}\cup \mathrm{C})\cap \mathrm{C}' ) = ∅\) Thus, we have: \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}' = (\mathrm{B} \cap \mathrm{A}')\)
04

Identify the correct option

Comparing the simplified expression with the given options, we see that: \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap (\mathrm{A}' \cup \mathrm{B} \cup \mathrm{C})\cap \mathrm{C}' = (\mathrm{B} \cap \mathrm{A}')\) Which is equal to option (a): \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap\left(\mathrm{A}\cap \mathrm{B}' \cap \mathrm{C}'\right)' \cap \mathrm{C}' = \mathrm{B} \cap \mathrm{C}'\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(f: R \rightarrow R\) defined by \(f(x)=x^{4}+2\) then the value of \(f^{-1}(83)\) and \(\mathrm{f}^{-1}(-2)\) respectively are. (a) \(\Phi,\\{3,-3\\}\) (b) \(\\{3,-3\\}, \Phi\) (c) \(\\{4,-4\\}, \Phi\) (d) \(\\{4,-4\\},\\{2,-2\\}\)

Let \(\mathrm{R}\) be the relation over the set \(\mathrm{N} \times \mathrm{N}\) and is defined by \((a, b) R(c, d) \Leftrightarrow a+d=b+c\) Then \(R\) is (a) Reflexive only (b) Symmetric only (c) Transitive only (d) An equivalence relation

If the function \(\mathrm{f}:[1, \infty) \rightarrow[1, \infty)\) is defined by \(\mathrm{f}(\mathrm{x})=2^{\mathrm{X}(\mathrm{x}-1)}\) then \(\mathrm{f}^{-1}(\mathrm{x})\) is (a) \((1 / 3)^{\mathrm{x}}\) (b) \((1 / 2)\left[1+\sqrt{ \left.\left(1+4 \log _{2} \mathrm{x}\right)\right]}\right.\) (c) \(\left.(1 / 2)\left[1-\sqrt{(} 1+4 \log _{2} \mathrm{x}\right)\right]\) (d) \(2^{[1 /\\{x(x-1)\\}]}\)

Let \(\mathrm{X}=\\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}, \mathrm{x}+\mathrm{y}+\mathrm{z}=10, \mathrm{x}<\mathrm{y}<\mathrm{z}\\}\) and \(\mathrm{Y}=\\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}, \mathrm{y}=|\mathrm{x}-\mathrm{z}|\\}\) then \(\mathrm{X} \cap \mathrm{Y}\) is equal to (a) \(\\{(2,3,5)\\}\) (b) \(\\{(1,4,5)\\}\) (c) \(\\{(5,1,4)\\}\) (d) \(\\{(2,3,5),(1,4,5)\\}\)

If function \(\mathrm{f}\) satisfies the equation \(3 \mathrm{f}(\mathrm{x})+2 \mathrm{f}[\mathrm{x}+59) /(\mathrm{x}-1)]=10 \mathrm{x}+30, \mathrm{x} \neq 1\) then \(\mathrm{f}(7)=\ldots \ldots\) (a) 8 (b) 4 (c) \(-8\) (d) 11

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free