Chapter 1: Problem 45
If \(\mathrm{A}=\\{1,2,3\\}\), then the number of equivalence relation containing \((1,2)\) is (a) 1 (b) 2 (c) 3 (d) 8
Chapter 1: Problem 45
If \(\mathrm{A}=\\{1,2,3\\}\), then the number of equivalence relation containing \((1,2)\) is (a) 1 (b) 2 (c) 3 (d) 8
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{R}\) be a reflexive relation of a finite set A having n elements and let there be \(\mathrm{m}\) ordered pairs in \(\mathrm{R}\). Then (a) \(\mathrm{m} \geq \mathrm{n}\) (b) \(\mathrm{m} \leq \mathrm{n}\) (c) \(\mathrm{m}=\mathrm{n}\) (d) None of these
If \(\mathrm{aN}=\\{\mathrm{ax} / \mathrm{x} \in \mathrm{N}\\}\) and \(\mathrm{bN} \cap \mathrm{cN}=\mathrm{d} \mathrm{N}\) Where \(\mathrm{b}, \mathrm{c} \in \mathrm{N}\) are relatively prime then (a) \(\mathrm{d}=\mathrm{bc}\) (b) \(c=b d\) (c) \(b=c d\) (d) \(a=b d\)
Which of the following relation is one-one (a) \(R_{1}=\left\\{(x, y) / x^{2}+y^{2}=1, x, y \in R\right\\}\) (b) \(\mathrm{R}_{2}=\left\\{(\mathrm{x}, \mathrm{y}) / \mathrm{y}=\mathrm{e}^{(\mathrm{x}) 2} / \mathrm{x}, \mathrm{y} \in \mathrm{R}\right\\}\) (c) \(R_{3}=\left\\{(x, y) / y=x^{2}-3 x+3, x, y \in R\right\\}\) (d) None of these
If \(\mathrm{f}(\mathrm{x})=[(1-\mathrm{x}) /(1+\mathrm{x})]\) then \(\mathrm{f}(\mathrm{f}(\cos 2 \theta))=\ldots\) (a) \(\tan 2 \theta\) (b) \(\sec 2 \theta\) (c) \(\cos 2 \theta\) (d) \(\cot 2 \theta\)
Taking \(\mathrm{U}=[1,5], \mathrm{A}=\left\\{\mathrm{x} / \mathrm{x} \in \mathrm{N}, \mathrm{x}^{2}-6 \mathrm{x}+5=0\right\\} \mathrm{A}^{\prime}=\ldots\) (a) \(\\{1,5\\}\) (b) \((1,5)\) (c) \([1,5]\) (d) \([-1,-5]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.