Chapter 1: Problem 52
Range of \(f(x)=\left[\left(x^{2}+34 x-71\right) /\left(x^{2}+2 x-7\right)\right]\) is (a) \([5,9]\) (b) \((5,9]\) (c) \((-\infty, 5] \cup[9, \infty)\) (d) \((-\infty, 5) \cup(9, \infty)\)
Chapter 1: Problem 52
Range of \(f(x)=\left[\left(x^{2}+34 x-71\right) /\left(x^{2}+2 x-7\right)\right]\) is (a) \([5,9]\) (b) \((5,9]\) (c) \((-\infty, 5] \cup[9, \infty)\) (d) \((-\infty, 5) \cup(9, \infty)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(f: R \rightarrow R, f(x)=x^{2}+1\) then \(f^{-1}(-2) \cup f^{-1}(17) \ldots\) (a) \(\\{\pm 4\\}\) (b) \(\\{\pm 1, \pm 4\\}\) (c) \(\\{4\\}\) (d) \(\\{1,4\\}\)
Let \(\mathrm{R}\) be the relation over the set \(\mathrm{N} \times \mathrm{N}\) and is defined by \((a, b) R(c, d) \Leftrightarrow a+d=b+c\) Then \(R\) is (a) Reflexive only (b) Symmetric only (c) Transitive only (d) An equivalence relation
Given the relation on \(\mathrm{R}=\\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\\}\) in the set \(\mathrm{A}=\\{\mathrm{a}, \mathrm{b}, \mathrm{c}\\}\) Then the minimum number of ordered pairs which added to \(R\) make it an equivalence relation is (a) 5 (b) 6 (c) 7 (d) 8
The largest interval in which the function \(\left.\mathrm{f}(\mathrm{x})=3 \sin \left[\sqrt{\\{}\left(\pi^{2} / 9\right)-\mathrm{x}^{2}\right\\}\right]\) assumes values is (a) \([0,3 \sqrt{3}]\) (b) \([\\{(-3 \sqrt{3}) / 2\\},\\{(3 \sqrt{3}) / 2\\}]\) (c) \([0,\\{(3 \sqrt{3}) / 2\\}]\) (d) \([\\{(-3 \sqrt{3}) / 2\\}, 0]\)
If \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}\) and \(\mathrm{g}\) is identity function, then (a) \((\operatorname{fog})(\mathrm{x})=\mathrm{g}(\mathrm{x})\) (b) \((\operatorname{gog})(x)=g(x)\) (c) \((\) fog \()(x)=(g+g)(x)\) (d) \((\mathrm{fog})(\mathrm{x})=(\mathrm{f}+\mathrm{f})(\mathrm{x})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.