If \(\mathrm{f}(\mathrm{x})=[(1-\mathrm{x}) /(1+\mathrm{x})]\) then \(\mathrm{f}(\mathrm{f}(\cos 2 \theta))=\ldots\) (a) \(\tan 2 \theta\) (b) \(\sec 2 \theta\) (c) \(\cos 2 \theta\) (d) \(\cot 2 \theta\)

Short Answer

Expert verified
(c) \(\cos 2 \theta\)

Step by step solution

01

Find the value of \(\mathrm{f}(\cos 2 \theta)\)

Substitute \(\mathrm{x} = \cos 2 \theta\) in the function \(\mathrm{f}(\mathrm{x})=\dfrac{1 - \mathrm{x}}{1 + \mathrm{x}}\): \(\mathrm{f}(\cos 2 \theta) = \dfrac{1 - \cos 2 \theta}{1 + \cos 2 \theta}\)
02

Find the value of \(\mathrm{f}(\mathrm{f}(\cos 2 \theta))\)

Now, replace \(\mathrm{x}\) with the result of step 1 in the function \(\mathrm{f}(\mathrm{x})=\dfrac{1 - \mathrm{x}}{1 + \mathrm{x}}\): \(\mathrm{f}(\mathrm{f}(\cos 2 \theta)) =\mathrm{f} \left( \dfrac{1 - \cos 2 \theta}{1 + \cos 2 \theta} \right)\) Using the existing function notation, we have: \(\mathrm{f}\left(\dfrac{1 - \cos 2 \theta}{1 + \cos 2 \theta}\right) = \dfrac{1 - \dfrac{1 - \cos 2 \theta}{1 + \cos 2 \theta}}{1 + \dfrac{1 - \cos 2 \theta}{1 + \cos 2 \theta}}\)
03

Simplify and match the result with the given options

To simplify the expression, let's use the fact that \(a - \dfrac{b}{c} = \dfrac{ac - b}{c}\) and \(a + \dfrac{b}{c} = \dfrac{ac + b}{c}\). Thus, we get: \(\dfrac{1 - \dfrac{1 - \cos 2 \theta}{1 + \cos 2 \theta}}{1 + \dfrac{1 - \cos 2 \theta}{1 + \cos 2 \theta}} = \dfrac{\dfrac{1 + \cos 2 \theta - 1 + \cos 2 \theta}{1 + \cos 2 \theta}}{\dfrac{1 + \cos 2 \theta + 1 - \cos 2 \theta}{1 + \cos 2 \theta}}\) Simplify the numerator and denominator: \(\dfrac{2 \cos 2 \theta}{2} = \cos 2 \theta\) Therefore, the final result is: \(\mathrm{f}(\mathrm{f}(\cos 2 \theta))=\cos 2 \theta\) Comparing this result to the given options, our answer is:
04

Answer

(c) \(\cos 2 \theta\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose sets \(\mathrm{A}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots 60)\) each set having 12 elements and set \(\mathrm{B}_{\mathrm{j}}(\mathrm{j}=1,2,3 \ldots . \mathrm{n})\) each set having 4 elements let \({ }^{60} \mathrm{U}_{\mathrm{i}=1} \mathrm{~A}_{1}={ }^{\mathrm{n}} \mathrm{U}_{\mathrm{j}=1} \mathrm{~B}_{\mathrm{j}}=\mathrm{C}\) and each element of \(\mathrm{C}\) belongs to exactly 20 of \(\mathrm{A}_{i}\) 's exactly 18 of \(\mathrm{B}_{j}\) 's then \(\mathrm{n}\) is equal to (a) 162 (b) 36 (c) 60 (d) 120

If \(\mathrm{aN}=\\{\mathrm{ax} / \mathrm{x} \in \mathrm{N}\\}\) and \(\mathrm{bN} \cap \mathrm{cN}=\mathrm{d} \mathrm{N}\) Where \(\mathrm{b}, \mathrm{c} \in \mathrm{N}\) are relatively prime then (a) \(\mathrm{d}=\mathrm{bc}\) (b) \(c=b d\) (c) \(b=c d\) (d) \(a=b d\)

The inverse of \(\left[\left(7^{x}-7^{-x}\right) /\left(7^{x}+7^{-x}\right)\right]\) is (a) \((1 / 2) \log _{7}[(1+\mathrm{x}) /(1-\mathrm{x})]\) (b) \(\log _{7}[(1-x) /(1+x)]\) (c) \(\log _{(1 / 2)}[(1-x) /(1+x)]\) (d) \((1 / 2) \log _{e}[(1+x) /(1-x)]\)

Two finite sets have \(\mathrm{m}\) and \(\mathrm{n}\) element respectively. The total number of subsets of first set is 112 more than the total number of sub sets of the second set. The value of \(\mathrm{m}\) and \(\mathrm{n}\) respectively are (a) 5,2 (b) 4,7 (c) 7,4 (d) 2,5

The domain of the function \(\mathrm{f}(\mathrm{x})={ }^{21-\mathrm{x}} \mathrm{C}_{3 \mathrm{x}-1}+{ }_{25-3 \mathrm{x}} \mathrm{P}_{5 \mathrm{x}-3}\) is (a) \(\\{1,2,3\\}\) (b) \(\\{2,3\\}\) (c) \(\\{2,3,4\\}\) (d) \(\\{2,3,4,5\\}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free