Chapter 1: Problem 72
\(|[x /(x+1)]|<10^{-5}\) hold if (a) \(-10^{-5}<\mathrm{x}+1<10^{-4}\) (b) \(-(100001)^{-1}<\mathrm{x}<(99999)^{-1}\) (c) \((1 / 10000)<\mathrm{x}<1\) (d) \((99999)^{-1}<\mathrm{x}<(100001)^{-1}\)
Chapter 1: Problem 72
\(|[x /(x+1)]|<10^{-5}\) hold if (a) \(-10^{-5}<\mathrm{x}+1<10^{-4}\) (b) \(-(100001)^{-1}<\mathrm{x}<(99999)^{-1}\) (c) \((1 / 10000)<\mathrm{x}<1\) (d) \((99999)^{-1}<\mathrm{x}<(100001)^{-1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{A}=\left\\{\mathrm{x} / \mathrm{x}^{2}=1\right\\}\) and \(\mathrm{B}=\left\\{\mathrm{x} / \mathrm{x}^{4}=1\right\\}\) then \(\mathrm{A} \Delta \mathrm{B}\) is equal to \((\mathrm{x} \in \mathrm{C})\) (a) \(\\{-1,1, \mathrm{i},-\mathrm{i}\\}\) (b) \(\\{-1,1\\}\) (c) \(\\{i,-i\\}\) (d) \(\\{-1,1, i\\}\)
Let \(\mathrm{X}=\\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}, \mathrm{x}+\mathrm{y}+\mathrm{z}=10, \mathrm{x}<\mathrm{y}<\mathrm{z}\\}\) and \(\mathrm{Y}=\\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}, \mathrm{y}=|\mathrm{x}-\mathrm{z}|\\}\) then \(\mathrm{X} \cap \mathrm{Y}\) is equal to (a) \(\\{(2,3,5)\\}\) (b) \(\\{(1,4,5)\\}\) (c) \(\\{(5,1,4)\\}\) (d) \(\\{(2,3,5),(1,4,5)\\}\)
\(\mathrm{A}=[-1,1], \mathrm{B}=[0,1], \mathrm{C}=[-1,0]\) \(\mathrm{S}_{1}=\left\\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x} \in \mathrm{A}, \mathrm{y} \in \mathrm{A}\right\\}\) \(\mathrm{S}_{2}=\left\\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x} \in \mathrm{A}, \mathrm{y} \in \mathrm{B}\right\\}\) \(S_{3}=\left\\{(x, y) / x^{2}+y^{2}=1, x \in A, y \in C\right\\}\) \(\mathrm{S}_{4}=\left\\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x} \in \mathrm{B}, \mathrm{y} \in \mathrm{C}\right\\}\) then (a) \(\mathrm{S}_{1}\) is not a graph of a function (b) \(\mathrm{S}_{2}\) is not a graph of a function (c) \(S_{3}\) is not a graph of a function (d) \(\mathrm{S}_{4}\) is not a graph of a function
The domain of \(\mathrm{f}(\mathrm{x})=\log _{5}\left[\log _{6}\left(\log _{8} \mathrm{x}\right)\right]\) is (a) \(x>4\) (b) \(x>8\) (c) \(x<8\) (d) \(x<4\)
Let \(R\) be the real line consider the following subsets of the plane \(R \times
R . S=\\{(x, y) / y=x+1\) and \(0
What do you think about this solution?
We value your feedback to improve our textbook solutions.