Chapter 1: Problem 83
\(f(x)=\max \\{2-x, 2+x, 4\\} x \in R\) is
(a) \(f(x)=\mid \begin{array}{cc}2-x & x \geq 2 \\ 4 & -2
Chapter 1: Problem 83
\(f(x)=\max \\{2-x, 2+x, 4\\} x \in R\) is
(a) \(f(x)=\mid \begin{array}{cc}2-x & x \geq 2 \\ 4 & -2
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(f: R \rightarrow R, f(x)=x^{2}+1\) then \(f^{-1}(-2) \cup f^{-1}(17) \ldots\) (a) \(\\{\pm 4\\}\) (b) \(\\{\pm 1, \pm 4\\}\) (c) \(\\{4\\}\) (d) \(\\{1,4\\}\)
If \(\mathrm{n}(\mathrm{A})=3, \mathrm{n}(\mathrm{B})=5\) and \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=2\) then \(\mathrm{n}[(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{B} \times \mathrm{A})]=\ldots \ldots\) (a) 5 (b) 3 (c) 4 (d) 6
Taking \(\mathrm{U}=[1,5], \mathrm{A}=\left\\{\mathrm{x} / \mathrm{x} \in \mathrm{N}, \mathrm{x}^{2}-6 \mathrm{x}+5=0\right\\} \mathrm{A}^{\prime}=\ldots\) (a) \(\\{1,5\\}\) (b) \((1,5)\) (c) \([1,5]\) (d) \([-1,-5]\)
If \(\mathrm{f}(\mathrm{x})=[(1-\mathrm{x}) /(1+\mathrm{x})]\) then \(\mathrm{f}(\mathrm{f}(\cos 2 \theta))=\ldots\) (a) \(\tan 2 \theta\) (b) \(\sec 2 \theta\) (c) \(\cos 2 \theta\) (d) \(\cot 2 \theta\)
A real valued function \(\mathrm{f}(\mathrm{x})\) satisfies the functional equation \(f(x-y)=f(x) \cdot f(y)-f(3-x) \cdot f(3+y)\) where \(f(0)=1, f(6-x)\) is equal to (a) \(\mathrm{f}(\mathrm{x})\) (b) \(\mathrm{f}(3)\) (c) \(\mathrm{f}(3)+\mathrm{f}(3-\mathrm{x})\) (d) \(-\mathrm{f}(\mathrm{x})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.