The largest interval in which the function \(\left.\mathrm{f}(\mathrm{x})=3 \sin \left[\sqrt{\\{}\left(\pi^{2} / 9\right)-\mathrm{x}^{2}\right\\}\right]\) assumes values is (a) \([0,3 \sqrt{3}]\) (b) \([\\{(-3 \sqrt{3}) / 2\\},\\{(3 \sqrt{3}) / 2\\}]\) (c) \([0,\\{(3 \sqrt{3}) / 2\\}]\) (d) \([\\{(-3 \sqrt{3}) / 2\\}, 0]\)

Short Answer

Expert verified
The largest interval in which the function \(\mathrm{f}(\mathrm{x})=3 \sin \left[\sqrt{\left(\pi^{2} / 9\right)-\mathrm{x}^{2}\right]\) assumes values is (b) \([\\{(-3\sqrt{3})/2\\}, \\{(3\sqrt{3})/2\\}]\).

Step by step solution

01

Analyze the argument of the sine function

Our main focus is to analyze the expression inside the sine function: \(\sqrt{\left(\frac{\pi^2}{9}\right) - x^2}\). We need to ensure this argument is real, meaning the expression inside the square root must be greater than or equal to zero. Hence, we have the inequality: \[\frac{\pi^2}{9} - x^2 \geq 0\]
02

Solve the inequality

Let's start by isolating the variable term, adding \(x^2\) to both sides of the inequality: \[\frac{\pi^2}{9} \geq x^2\] Now, we can take the square root of both sides: \[\sqrt{\frac{\pi^2}{9}} \geq \sqrt{x^2}\] Recall that \(\sqrt{\pi^2 / 9}= \pi/3\) and \(\sqrt{x^2} = |x|\), so our inequality becomes: \[\frac{\pi}{3} \geq |x|\] We can break this absolute value inequality down into two separate inequalities: \[-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}\] So, the largest interval in which the function assumes values is \([-\frac{\pi}{3}, \frac{\pi}{3}]\).
03

Compare with the given options

Now that we have the largest interval, we can compare it to the given options: (a) \([0,3 \sqrt{3}]\) (b) \([\\{(-3 \sqrt{3}) / 2\\},\\{(3 \sqrt{3}) / 2\\}]\) (c) \([0,\\{(3 \sqrt{3}) / 2\\}]\) (d) \([\\{(-3 \sqrt{3}) / 2\\}, 0]\) We notice that our interval, \([-\frac{\pi}{3}, \frac{\pi}{3}]\), is not exactly the same as any of the given options. However, the interval \([\\{(-3 \sqrt{3}) / 2\\},\\{(3 \sqrt{3}) / 2\\}]\) is the closest to our calculated interval, as \(\frac{3\sqrt{3}}{2} \approx \frac{\pi}{3}\). Therefore, the correct answer is: (b) \([\\{(-3 \sqrt{3}) / 2\\},\\{(3 \sqrt{3}) / 2\\}]\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

There are three-three sets are given in column-A and column-B \begin{tabular}{l|l} \(\frac{\text { Column-A }}{(1)\\{\mathrm{L}, \mathrm{A}, \mathrm{T}\\}}\) & (A) \(\left\\{\mathrm{x} / \mathrm{x} \in \mathrm{z}, \mathrm{x}^{2}<5\right\\}\) \\\ (2) \(\left\\{\mathrm{x} \in \mathrm{z} / \mathrm{x}^{3}-\mathrm{x}=0\right\\}\) & (B) \(\\{\mathrm{x} / \mathrm{x}\) is a letter of the word LATA \(\\}\) \\ (3) \(\\{-2,-1,0,1,2\\}\) & (C) \(\\{\sin 0, \sin (3 \pi / 2), \tan (5 \pi / 4)\\}\) \end{tabular} Which one of the following matches is correct? (a) \(1-\mathrm{A}, 2-\mathrm{B}, 3-\mathrm{C}\) (b) \(1-\mathrm{B}, 2-\mathrm{A}, 3-\mathrm{C}\) (c) \(1-\mathrm{B}, 2-\mathrm{C}, 3-\mathrm{A}\) (d) \(1-\mathrm{A}, 2-\mathrm{C}, 3-\mathrm{B}\)

A function \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) satisfies the equation \(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{xy})=\mathrm{x}+\mathrm{y}\) for all \(\mathrm{x}, \mathrm{y} \in \mathrm{R}\) and \(\mathrm{f}(1)>0\), then (a) \(\mathrm{f}(\mathrm{x})=\mathrm{x}+(1 / 2)\) (b) \(\mathrm{f}(\mathrm{x})=(1 / 2) \mathrm{x}+1\) (c) \(\mathrm{f}(\mathrm{x})=\mathrm{x}+1\) (d) \(\mathrm{f}(\mathrm{x})=(1 / 2) \mathrm{x}-1\)

Part of the domain of the function \(\left.\mathrm{f}(\mathrm{x})=\sqrt{[}\\{\cos \mathrm{x}-(1 / 2)\\} /\left(6+35 \mathrm{x}-6 \mathrm{x}^{2}\right)\right]\) lying in the interval \([-1,6]\) is (a) \([-(1 / 6),(\pi / 3)]\) (b) \([(5 \pi / 3), 6]\) (c) \([-(1 / 5),(\pi / 3)] \cup[(5 \pi / 3), 6]\) (d) \((-(1 / 6),(\pi / 3)] \cup[(5 \pi / 3), 6)\)

Let \(\mathrm{R}\) be a relation in \(\mathrm{N}\) defined by \(\mathrm{R}=\left\\{\left(1+\mathrm{x}, 1+\mathrm{x}^{2}\right) / \mathrm{x} \leq 5, \mathrm{x} \in \mathrm{N}\right\\}\) which of the following is false? (a) \(\mathrm{R}=\\{(2,2),(3,5),(4,10),(5,17),(6,25)\\}\) (b) Domain of \(\mathrm{R}=\\{2,3,4,5,6\\}\) (c) Range of \(\mathrm{R}=\\{2,5,10,17,26\\}\) (d) (b) and (c) are true

If \(\mathrm{A}=\left\\{\mathrm{x} / \mathrm{x}^{2}=1\right\\}\) and \(\mathrm{B}=\left\\{\mathrm{x} / \mathrm{x}^{4}=1\right\\}\) then \(\mathrm{A} \Delta \mathrm{B}\) is equal to \((\mathrm{x} \in \mathrm{C})\) (a) \(\\{-1,1, \mathrm{i},-\mathrm{i}\\}\) (b) \(\\{-1,1\\}\) (c) \(\\{i,-i\\}\) (d) \(\\{-1,1, i\\}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free