Chapter 1: Problem 87
The domain of \(\mathrm{f}(\mathrm{x})=\log _{5}\left[\log _{6}\left(\log _{8} \mathrm{x}\right)\right]\) is (a) \(x>4\) (b) \(x>8\) (c) \(x<8\) (d) \(x<4\)
Chapter 1: Problem 87
The domain of \(\mathrm{f}(\mathrm{x})=\log _{5}\left[\log _{6}\left(\log _{8} \mathrm{x}\right)\right]\) is (a) \(x>4\) (b) \(x>8\) (c) \(x<8\) (d) \(x<4\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich one of the following relations on \(R\) is an equivalence relation? (a) a \(\mathrm{R}_{1} \mathrm{~b} \Leftrightarrow|\mathrm{a}|=|\mathrm{b}|\) (b) a \(\mathrm{R}_{2} \mathrm{~b} \Leftrightarrow \mathrm{a} \geq \mathrm{b}\) (c) a \(\mathrm{R}_{3} \mathrm{~b} \Leftrightarrow\) a divides \(\mathrm{b}\) (d) a \(\mathrm{R}_{4} \mathrm{~b} \Leftrightarrow \mathrm{a}<\mathrm{b}\)
If \(\mathrm{f}(\mathrm{x})=[\mathrm{x} /(\mathrm{x}-1)], \mathrm{x} \neq 1\) then \(\left(\right.\) fofof \(\ldots \mathrm{f}_{(17 \text { times })}(\mathrm{x})\) is equal to \(\ldots \ldots\) (a) \([x /(x-1)]\) (b) \(x\) (c) \([x /(x-1)]^{17}\) (d) \([17 \mathrm{x} /(\mathrm{x}-1)]\)
If \(\mathrm{A}=\\{1,3,5,7,9,11,13,15,17\\}, \mathrm{B}=\\{2,4, \ldots 18\\}\) and \(\mathrm{N}\) is the universal set then \(\mathrm{A}^{\prime} \cup\left(\mathrm{A} \cup\left(\mathrm{B} \cap \mathrm{B}^{\prime}\right)\right.\) ) is (a) \(\mathrm{A}\) (b) B (c) \(A \cup B\) (d) \(\mathrm{N}\)
For \(\mathrm{n}, \mathrm{m} \in \mathrm{N} \mathrm{n} / \mathrm{m}\) means that \(\mathrm{n}\) is a factor of \(\mathrm{m}\), the relation/is (a) reflexive and symmetric (b) transitive and symmetric (c) reflexive transitive and symmetric (d) reflexive transitive and not symmetric
Let \(R\) be the real line consider the following subsets of the plane \(R \times
R . S=\\{(x, y) / y=x+1\) and \(0
What do you think about this solution?
We value your feedback to improve our textbook solutions.