Chapter 1: Problem 9
Suppose sets \(\mathrm{A}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots 60)\) each set having 12 elements and set \(\mathrm{B}_{\mathrm{j}}(\mathrm{j}=1,2,3 \ldots . \mathrm{n})\) each set having 4 elements let \({ }^{60} \mathrm{U}_{\mathrm{i}=1} \mathrm{~A}_{1}={ }^{\mathrm{n}} \mathrm{U}_{\mathrm{j}=1} \mathrm{~B}_{\mathrm{j}}=\mathrm{C}\) and each element of \(\mathrm{C}\) belongs to exactly 20 of \(\mathrm{A}_{i}\) 's exactly 18 of \(\mathrm{B}_{j}\) 's then \(\mathrm{n}\) is equal to (a) 162 (b) 36 (c) 60 (d) 120