Chapter 1: Problem 96
\(g: R \rightarrow R, g(x)=3+3 \sqrt{x}\) and \(f(g(x))=2-3 \sqrt{x}+x\) then \(\mathrm{f}(\mathrm{x})=\ldots\) (a) \(x^{3}-x^{2}+x-5\) (b) \(x^{3}-9 x^{2}+26 x-22\) (c) \(x^{3}+9 x^{2}-26 x+5\) (d) \(x^{3}+x^{2}-x+5\)
Chapter 1: Problem 96
\(g: R \rightarrow R, g(x)=3+3 \sqrt{x}\) and \(f(g(x))=2-3 \sqrt{x}+x\) then \(\mathrm{f}(\mathrm{x})=\ldots\) (a) \(x^{3}-x^{2}+x-5\) (b) \(x^{3}-9 x^{2}+26 x-22\) (c) \(x^{3}+9 x^{2}-26 x+5\) (d) \(x^{3}+x^{2}-x+5\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{f}(\mathrm{x})=[\mathrm{x} /(\mathrm{x}-1)], \mathrm{x} \neq 1\) then \(\left(\right.\) fofof \(\ldots \mathrm{f}_{(17 \text { times })}(\mathrm{x})\) is equal to \(\ldots \ldots\) (a) \([x /(x-1)]\) (b) \(x\) (c) \([x /(x-1)]^{17}\) (d) \([17 \mathrm{x} /(\mathrm{x}-1)]\)
\(\mathrm{A}=\\{(\mathrm{a}, \mathrm{b}) / \mathrm{b}=2 \mathrm{a}-5\\}\) If \((\mathrm{m}, 5)\) and \((6, \mathrm{n})\) are the member of set \(\mathrm{A}\) then \(\mathrm{m}\) and \(\mathrm{n}\) are respectively (a) 5,7 (b) 7,5 (c) 2,3 (d) 5,3
The range of \(\mathrm{f}(\mathrm{x})=6^{\mathrm{x}}+3^{\mathrm{x}}+6^{-\mathrm{x}}+3^{-\mathrm{x}}+2\) is subset of \(\ldots\) (a) \([-\infty,-2)\) (b) \((-2,3)\) (c) \((6, \infty)\) (d) \([6, \infty)\)
If the function \(\mathrm{f}:[1, \infty) \rightarrow[1, \infty)\) is defined by \(\mathrm{f}(\mathrm{x})=2^{\mathrm{X}(\mathrm{x}-1)}\) then \(\mathrm{f}^{-1}(\mathrm{x})\) is (a) \((1 / 3)^{\mathrm{x}}\) (b) \((1 / 2)\left[1+\sqrt{ \left.\left(1+4 \log _{2} \mathrm{x}\right)\right]}\right.\) (c) \(\left.(1 / 2)\left[1-\sqrt{(} 1+4 \log _{2} \mathrm{x}\right)\right]\) (d) \(2^{[1 /\\{x(x-1)\\}]}\)
The relation \(\mathrm{R}\) defined on the let \(\mathrm{A}=\\{1,2,3,4,5\\}\) by \(R=\left\\{(x, y) /\left|x^{2}-y^{2}\right|<16\right\\} \quad\) is given by (a) \(\\{(1,1),(2,1),(3,1),(4,1),(2,3)\\}\) (b) \(\\{(2,2),(3,2),(4,2),(2,4)\\}\) (c) \(\\{(3,3),(4,3),(5,4),(3,4)\\}\) (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.