Chapter 10: Problem 789
If \(\mathrm{y}=3 \mathrm{x}^{(3 / 2)}(\mathrm{x}-1)\) then \(|[\mathrm{dy} / \mathrm{d} \mathrm{x}]|_{(\mathrm{x}=1)}=\) (a) 6 (b) 3 (c) 1 (d) 0
Chapter 10: Problem 789
If \(\mathrm{y}=3 \mathrm{x}^{(3 / 2)}(\mathrm{x}-1)\) then \(|[\mathrm{dy} / \mathrm{d} \mathrm{x}]|_{(\mathrm{x}=1)}=\) (a) 6 (b) 3 (c) 1 (d) 0
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))\) and \(\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1\) then \(\mid[\mathrm{dy} / \mathrm{d} \mathrm{x}]_{\mathrm{x} 0}=\) (a) 0 (b) 1 (c) - 1 (d) 2
If \(y=\sin (x / 2) \mid[1 /\\{\cos (x / 2) \cos x\\}]+[1 /\\{\cos x \cos (3 x / 2)\\}]\) \(+[1 /\\{\cos (3 \mathrm{x} / 2) \cos 2 \mathrm{x}\\}] \mid\) then \((\mathrm{dy} / \mathrm{dx})_{\mathrm{x}=(\pi / 2)}=\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \(-1\) (d) 1
In \(\mathrm{a}+\mathrm{b}+\mathrm{c}=0\), than the equation \(3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) has, in the interval \((0,1)\) (a) at least one root (b) at most one root (c) no root (d) Exactly one root exist.
If function \(\mathrm{f}(\mathrm{x})=\mathrm{ax}^{3}+\mathrm{bx}^{2}+11 \mathrm{x}-6, \mathrm{x} \in[1,3]\) is satisfying Roll's condition and \(c=|2+(1 / \sqrt{3})|\) than \(\mathrm{a}=\) \(\mathrm{b}=\) (a) \(-1,+6\) (b) \(-2,1\) (c) \(-1,(1 / 2)\) (d) \(1,-6\)
In the interval \(|0,(\pi / 4)|\), then function \(\mathrm{f}(\mathrm{x})=\tan ^{-1}(\sin \mathrm{x}+\) \(\cos x)\) is (a) Decreasing (b) Increasing (c) Both (d) Even Function
What do you think about this solution?
We value your feedback to improve our textbook solutions.