Chapter 10: Problem 794
If \(\mathrm{f}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}\) and \(\mathrm{f}(0)=\mathrm{f}^{\prime}(\mathrm{x})=2\) then \(\mathrm{f}(1)=\) (a) 4 (b) 2 (c) 1 (d) \(-4\)
Chapter 10: Problem 794
If \(\mathrm{f}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}\) and \(\mathrm{f}(0)=\mathrm{f}^{\prime}(\mathrm{x})=2\) then \(\mathrm{f}(1)=\) (a) 4 (b) 2 (c) 1 (d) \(-4\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(\mathrm{y}=\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right] \tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+3 \mathrm{x}+3\right)\right]\) \(+\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+5 \mathrm{x}+7\right)\right] \ldots \ldots\) to \(\mathrm{n}\) terms then \((\mathrm{dy} / \mathrm{d} \mathrm{x})\) \(=\) (a) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]-\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (c) \(\left[2 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (d) \(\sum \mathrm{n}\)
The Roll's theorem is applicable in the interval \(-1 \leq \mathrm{x} \leq 1\) for the function (a) \(\mathrm{f}(\mathrm{x})=\mathrm{x}\) (b) \(f(x)=x^{2}\) (c) \(f(x)=2 x^{2}+3\) (d) \(\mathrm{f}(\mathrm{x})=|\mathrm{x}|\)
If \(\mathrm{y}=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))\) and \(\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1\) then \(\mid[\mathrm{dy} / \mathrm{d} \mathrm{x}]_{\mathrm{x} 0}=\) (a) 0 (b) 1 (c) - 1 (d) 2
If \(\mathrm{m}=\tan \theta\) is the slope of the tangent to the curve \(\mathrm{e}\) \(\mathrm{y}=1+\mathrm{x}^{2}\) than (a) \(|\tan \theta| \geq 1\) (b) \(|\tan \theta|<1\) (c) \(\tan \theta<1\) (d) \(|\tan \theta| \leq 1\)
If \(f(x)=x \cdot \cot ^{-1} x\) then \(f^{\prime}(1)=\) (a) \((\pi / 4)-(1 / 2)\) (b) \((\pi / \overline{4)+(1 / 2)}\) (c) \((\pi / 4)-(1 / 3)\) (d) \((\pi / 4)-1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.