Chapter 10: Problem 794
If \(\mathrm{f}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}\) and \(\mathrm{f}(0)=\mathrm{f}^{\prime}(\mathrm{x})=2\) then \(\mathrm{f}(1)=\) (a) 4 (b) 2 (c) 1 (d) \(-4\)
Chapter 10: Problem 794
If \(\mathrm{f}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}\) and \(\mathrm{f}(0)=\mathrm{f}^{\prime}(\mathrm{x})=2\) then \(\mathrm{f}(1)=\) (a) 4 (b) 2 (c) 1 (d) \(-4\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(y=\sin (x / 2) \mid[1 /\\{\cos (x / 2) \cos x\\}]+[1 /\\{\cos x \cos (3 x / 2)\\}]\) \(+[1 /\\{\cos (3 \mathrm{x} / 2) \cos 2 \mathrm{x}\\}] \mid\) then \((\mathrm{dy} / \mathrm{dx})_{\mathrm{x}=(\pi / 2)}=\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \(-1\) (d) 1
If \(\mathrm{m}=\tan \theta\) is the slope of the tangent to the curve \(\mathrm{e}\) \(\mathrm{y}=1+\mathrm{x}^{2}\) than (a) \(|\tan \theta| \geq 1\) (b) \(|\tan \theta|<1\) (c) \(\tan \theta<1\) (d) \(|\tan \theta| \leq 1\)
If \(y=\cos ^{-1} \mid\left[\left(3 x+4 \sqrt{ \left.\left(1-x^{2}\right)\right) / 5}\right] \mid\right.\) then \((\operatorname{dy} / d x)=\) (a) \(\left.\left[\\{-1\\} /\left\\{\sqrt{(} 1-\mathrm{x}^{2}\right)\right\\}\right]\) (b) \(\left[2 /\left\\{\sqrt{\left. \left.\left(1-\mathrm{x}^{2}\right)\right\\}\right]}\right.\right.\) (c) \(\left[5 /\left\\{3 \sqrt{\left. \left.\left(1-x^{2}\right)\right\\}\right]}\right.\right.\) (d) \(\left[\\{-3\\} /\left\\{5 \sqrt{\left. \left.\left(1-x^{2}\right)\right\\}\right]}\right.\right.\)
Derivative of \(\sec ^{-1}\left|\left[1 /\left(2 \mathrm{x}^{2}-1\right)\right]\right|\) w.r.t. \(\sqrt{(1+3 \mathrm{x})}\) at \(\mathrm{x}=[(-1) / 3] \mathrm{is}\) (a) 0 (b) \((1 / 2)\) (c) \((1 / 3)\) (d) 3
if \(\mathrm{y}=\mathrm{e}^{\mathrm{x}} \tan ^{-1} \mathrm{e}^{\mathrm{x}}-\ln \sqrt{\left(1+\mathrm{e}^{2 \mathrm{x}}\right)}\) the \(\mathrm{dy} / \mathrm{d} \mathrm{x}\) is (a) \(\mathrm{e}^{\mathrm{x}} \tan ^{-1} \mathrm{e}^{\mathrm{x}}\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(\tan ^{-1} \mathrm{e}^{\mathrm{x}}\right)\right]\) (c) \(\tan ^{-1} e^{x}\) (d) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.