Chapter 10: Problem 801
If \(f\) is an even function and \(f^{\prime}(x)\) is define than \(f^{\prime}(x)+f^{\prime}(-x)\) (a) 0 (b) \(<0\) \((\mathrm{c}) \neq 0\) \((\mathrm{d})>0\)
Chapter 10: Problem 801
If \(f\) is an even function and \(f^{\prime}(x)\) is define than \(f^{\prime}(x)+f^{\prime}(-x)\) (a) 0 (b) \(<0\) \((\mathrm{c}) \neq 0\) \((\mathrm{d})>0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(y=\cos ^{-1} \mid\left[\left(3 x+4 \sqrt{ \left.\left(1-x^{2}\right)\right) / 5}\right] \mid\right.\) then \((\operatorname{dy} / d x)=\) (a) \(\left.\left[\\{-1\\} /\left\\{\sqrt{(} 1-\mathrm{x}^{2}\right)\right\\}\right]\) (b) \(\left[2 /\left\\{\sqrt{\left. \left.\left(1-\mathrm{x}^{2}\right)\right\\}\right]}\right.\right.\) (c) \(\left[5 /\left\\{3 \sqrt{\left. \left.\left(1-x^{2}\right)\right\\}\right]}\right.\right.\) (d) \(\left[\\{-3\\} /\left\\{5 \sqrt{\left. \left.\left(1-x^{2}\right)\right\\}\right]}\right.\right.\)
If \(x=\left[\left(e^{2 y}+1\right) /\left(e^{2 y}-1\right)\right]\) then \((d y / d x)=\) (a) \(\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (b) \(\left[1 /\left(\mathrm{x}^{2}-1\right)\right]\) (c) \(\left[1 /\left(1-x^{2}\right)\right]\) (d) \(\left[1 /\left(x^{2}-1\right)\right]\)
If \(\mathrm{y}=\log \sqrt{\\{}(1-\cos \mathrm{ax}) /(1+\cos a \mathrm{x})\\}\) then \(|[\mathrm{dy} / \mathrm{dx}]|_{(\mathrm{x}=1)}\) \(=\) (a) a cosec a (b) - a cosec a (c) cosec a (d) - cosec a
If \(\mathrm{y}^{2}=\mathrm{p}(\mathrm{x})\) is polynomial function more than 3 degree then \(2(\mathrm{~d} / \mathrm{dx})\left|\mathrm{y}^{3} \mathrm{y}_{2}\right|=\) (a) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (b) \(\mathrm{p}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (c) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime \prime}(\mathrm{x})\) (d) \(p(x) \cdot p^{\prime \prime \prime}(x)\)
The slope of the tangent at \((2,-1)\) for the curve \(x=t^{2}+3 t-8\) and \(y=2 t^{2}-2 t-5\) is (a) \((6 / 7)\) (b) \(-6\) (c) \((22 / 7)\) (d) \(7 / 6\) )
What do you think about this solution?
We value your feedback to improve our textbook solutions.