If \(f\) is an even function and \(f^{\prime}(x)\) is define than \(f^{\prime}(x)+f^{\prime}(-x)\) (a) 0 (b) \(<0\) \((\mathrm{c}) \neq 0\) \((\mathrm{d})>0\)

Short Answer

Expert verified
(a) 0

Step by step solution

01

Apply the definition of even function

Given that \(f\) is an even function, we have the equation \(f(-x) = f(x)\). Differentiate both sides with respect to \(x\).
02

Differentiate the equation

Derivate both sides: \[\frac{d}{dx}f(-x) = \frac{d}{dx}f(x)\] Apply the chain rule on the left-hand side: \[-f'(-x) = f'(x)\]
03

Find the value of f'(x) + f'(-x)

We are asked to find the value of \(f'(x) + f'(-x)\). To do this, we can simply add the right-hand side and left-hand side of the equation we got in step 2: \[-f'(-x) + f'(-x) = f'(x) + f'(x)\] Now, observe that we can simplify this equation: \[0 = 2f'(x)\]
04

Determine the choice of value

Since we have \(0 = 2f'(x)\), we can divide both sides by 2 to get: \[0 = f'(x)\] Therefore, the value of \(f'(x) + f'(-x)\) is 0. So, the correct answer is: (a) 0

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\mathrm{y}=\mathrm{x}^{\mathrm{x}}\) and \(\left[\left(\mathrm{d}^{2} \mathrm{y}\right) /\left(\mathrm{d} \mathrm{x}^{2}\right)\right]-(\mathrm{y} / \mathrm{x})=(1 / \alpha) \cdot(\mathrm{dy} / \mathrm{d} \mathrm{x})^{2}\) then (a) \(\mathrm{x}^{\mathrm{y}}\) (b) \(x^{x}\) (c) \(\mathrm{y}^{\mathrm{x}}\) (d) \(x\)

If \(\mathrm{e}^{\mathrm{y}}=\left(\mathrm{e}^{2} / \mathrm{x}^{2}\right)\) and \(\left[\left(\mathrm{d}^{2} \mathrm{y}\right) /\left(\mathrm{d} \mathrm{x}^{2}\right)\right]=\left(\mathrm{A} / \mathrm{x}^{2}\right)\) the \(\mathrm{A}=\) (a) \(-2\) (b) \((1 / 2)\) (c) 2 (d) \((1 / 3)\)

For \((\mathrm{d} / \mathrm{dx}) \log \left|\mathrm{e}^{\mathrm{x}}[(\mathrm{x}-4) /(\mathrm{x}+4)]^{(3 / 4)}\right|\) at \(\mathrm{x}=5\) then \((\mathrm{dy} / \mathrm{d} \mathrm{x})\) \(\begin{array}{llll}\text { (a) }(5 / 3) & \text { (b) }(3 / 5) & \text { (c) }-(3 / 5) & \text { (d) }-(5 / 3)\end{array}\)

If \(\mathrm{y}=\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right] \tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+3 \mathrm{x}+3\right)\right]\) \(+\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+5 \mathrm{x}+7\right)\right] \ldots \ldots\) to \(\mathrm{n}\) terms then \((\mathrm{dy} / \mathrm{d} \mathrm{x})\) \(=\) (a) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]-\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (c) \(\left[2 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (d) \(\sum \mathrm{n}\)

If \(\mathrm{y}=(1 / 3) \log \left[\\{\mathrm{x}+1\\} /\left\\{\mathrm{V}\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right\\}\right]+(1 / \sqrt{3}) \tan ^{-1}\) \([(2 x-1) /(\sqrt{3})]\) then \((d y / d x)=\) (a) \(\left[1 /\left(1+\mathrm{x}^{3}\right)\right]\) (b) \(\left[\left(x^{2}+x+1\right) /(x-1)\right]\) (c) \(\left[1 /\left(1-\mathrm{x}^{3}\right)\right]\) (d) none of these

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free