Chapter 10: Problem 819
Derivative of function \(\mathrm{f}(\mathrm{x})\left[\mathrm{x}^{2} /\left(1+\sin ^{2} \mathrm{x}\right)\right]\) is (a) Even function (b) Odd function (c) Not define (d) Increasing Function
Chapter 10: Problem 819
Derivative of function \(\mathrm{f}(\mathrm{x})\left[\mathrm{x}^{2} /\left(1+\sin ^{2} \mathrm{x}\right)\right]\) is (a) Even function (b) Odd function (c) Not define (d) Increasing Function
All the tools & learning materials you need for study success - in one app.
Get started for freeIf two variables \(x\) and \(y\) and \(x>0 . x y=1\) then minimum value of \(\mathrm{x}+\mathrm{y}\) is (a) 1 (b) 2 (c) \(2(1 / 2)\) (d) \(3(1 / 3)\)
Approximate value of \((1.0002)^{3000}\) is (a) \(1.2\) (b) \(1.4\) (c) \(1.6\) (d) \(1.8\)
if \(\mathrm{y}=\mathrm{e}^{\mathrm{x}} \tan ^{-1} \mathrm{e}^{\mathrm{x}}-\ln \sqrt{\left(1+\mathrm{e}^{2 \mathrm{x}}\right)}\) the \(\mathrm{dy} / \mathrm{d} \mathrm{x}\) is (a) \(\mathrm{e}^{\mathrm{x}} \tan ^{-1} \mathrm{e}^{\mathrm{x}}\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(\tan ^{-1} \mathrm{e}^{\mathrm{x}}\right)\right]\) (c) \(\tan ^{-1} e^{x}\) (d) none of these
If \(f(x)=x \cdot \cot ^{-1} x\) then \(f^{\prime}(1)=\) (a) \((\pi / 4)-(1 / 2)\) (b) \((\pi / \overline{4)+(1 / 2)}\) (c) \((\pi / 4)-(1 / 3)\) (d) \((\pi / 4)-1\)
The function \(\mathrm{f}(\mathrm{x})=2 \log (\mathrm{x}-2)-\mathrm{x}^{2}+4 \mathrm{x}+1\) increasing on the interval (a) \((2,3)\) (b) \((1,2)\) (c) \((2,4)\) (d) \((1,3)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.