Chapter 10: Problem 819
Derivative of function \(\mathrm{f}(\mathrm{x})\left[\mathrm{x}^{2} /\left(1+\sin ^{2} \mathrm{x}\right)\right]\) is (a) Even function (b) Odd function (c) Not define (d) Increasing Function
Chapter 10: Problem 819
Derivative of function \(\mathrm{f}(\mathrm{x})\left[\mathrm{x}^{2} /\left(1+\sin ^{2} \mathrm{x}\right)\right]\) is (a) Even function (b) Odd function (c) Not define (d) Increasing Function
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}(\mathrm{x})\) satisfy the requirement of lag ranger mean value theorm in \([0,2]\). If \(\mathrm{f}(0)=0\) and \(|\mathrm{f}(\mathrm{x})| \leq(1 / 2)\) for all \(\mathrm{x}\) in \(|0,2|\) then (a) \(\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 2\) (b) \(|\mathrm{f}(\mathrm{x})| \leq 1\) (c) \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}\) (d) \(\mathrm{f}(\mathrm{x})=3\) for at least one \(\mathrm{x}\) in \((0,2)\)
For every \(\mathrm{x}, \mathrm{x} \in \mathrm{R}, \mathrm{f}(\mathrm{x})=(\mathrm{a}+2) \mathrm{x}^{3}-3 \mathrm{ax}^{2}+9 \mathrm{ax}-1\) the function is decreasing then a (a) \((-4,-3)\) (b) \(\overline{(-3,-2)}\) (c) \((3,0)\) (d) \((-1,-3)\)
If \(\mathrm{y}=(1 / 3) \log \left[\\{\mathrm{x}+1\\} /\left\\{\mathrm{V}\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right\\}\right]+(1 / \sqrt{3}) \tan ^{-1}\) \([(2 x-1) /(\sqrt{3})]\) then \((d y / d x)=\) (a) \(\left[1 /\left(1+\mathrm{x}^{3}\right)\right]\) (b) \(\left[\left(x^{2}+x+1\right) /(x-1)\right]\) (c) \(\left[1 /\left(1-\mathrm{x}^{3}\right)\right]\) (d) none of these
If \(\mathrm{y}={ }^{\mathrm{x}} \sum_{\mathrm{r}=1} \tan ^{-1}\left[1 /\left(1+\mathrm{r}+\mathrm{r}^{2}\right)\right]\) then \((\mathrm{dy} / \mathrm{dx})=\) (a) \(\left[1 /\left(1+x^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(1+\mathrm{x})^{2}\right\\}\right]\) (c) 0 (d) \(\left[1 /\left\\{1-(\mathrm{x}+1)^{2}\right\\}\right]\)
Derivative of \(\sec ^{-1}\left|\left[1 /\left(2 \mathrm{x}^{2}-1\right)\right]\right|\) w.r.t. \(\sqrt{(1+3 \mathrm{x})}\) at \(\mathrm{x}=[(-1) / 3] \mathrm{is}\) (a) 0 (b) \((1 / 2)\) (c) \((1 / 3)\) (d) 3
What do you think about this solution?
We value your feedback to improve our textbook solutions.