Chapter 10: Problem 821
If \(\mathrm{f}^{\prime}(\mathrm{x})>0\) and \(\mathrm{g}^{\prime}(\mathrm{x})<0
\mathrm{x} \in \mathrm{R}\) then
(a) \(\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}+1))\)
(b) \(f(g(x))
Chapter 10: Problem 821
If \(\mathrm{f}^{\prime}(\mathrm{x})>0\) and \(\mathrm{g}^{\prime}(\mathrm{x})<0
\mathrm{x} \in \mathrm{R}\) then
(a) \(\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}+1))\)
(b) \(f(g(x))
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}=\log \sqrt{\\{}(1-\cos \mathrm{ax}) /(1+\cos a \mathrm{x})\\}\) then \(|[\mathrm{dy} / \mathrm{dx}]|_{(\mathrm{x}=1)}\) \(=\) (a) a cosec a (b) - a cosec a (c) cosec a (d) - cosec a
If \(\mathrm{y}=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))\) and \(\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1\) then \(\mid[\mathrm{dy} / \mathrm{d} \mathrm{x}]_{\mathrm{x} 0}=\) (a) 0 (b) 1 (c) - 1 (d) 2
The rate of change of function \(\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{5}-5 \mathrm{x}^{3}+5 \mathrm{x}-7\) is minimum when \(\mathrm{x}\) is (a) 0 (b) \((1 / \sqrt{2})\) (c) \(\sqrt{2}\) (d) \(\pm(1 / \sqrt{2})\)
\((\mathrm{d} / \mathrm{d} \mathrm{x})\left[(3 / 4) \cos \mathrm{x}-\cos ^{3} \mathrm{x}\right]\) when \(\mathrm{x}=18^{\circ}\) and \(\sin 54=\sqrt{(5+1)}\) (a) \((3 / 4) \sqrt{5}\) (b) \(3(\sqrt{5}+1)\) (c) \((3 / 16)(\sqrt{5}+1)\) (d) \((3 / 4)(\sqrt{5}+1)\)
If \(\mathrm{y}={ }^{\mathrm{x}} \sum_{\mathrm{r}=1} \tan ^{-1}\left[1 /\left(1+\mathrm{r}+\mathrm{r}^{2}\right)\right]\) then \((\mathrm{dy} / \mathrm{dx})=\) (a) \(\left[1 /\left(1+x^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(1+\mathrm{x})^{2}\right\\}\right]\) (c) 0 (d) \(\left[1 /\left\\{1-(\mathrm{x}+1)^{2}\right\\}\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.