Chapter 10: Problem 821
If \(\mathrm{f}^{\prime}(\mathrm{x})>0\) and \(\mathrm{g}^{\prime}(\mathrm{x})<0
\mathrm{x} \in \mathrm{R}\) then
(a) \(\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}+1))\)
(b) \(f(g(x))
Chapter 10: Problem 821
If \(\mathrm{f}^{\prime}(\mathrm{x})>0\) and \(\mathrm{g}^{\prime}(\mathrm{x})<0
\mathrm{x} \in \mathrm{R}\) then
(a) \(\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}+1))\)
(b) \(f(g(x))
All the tools & learning materials you need for study success - in one app.
Get started for freeif \(\mathrm{y}=\mathrm{e}^{\mathrm{x}} \tan ^{-1} \mathrm{e}^{\mathrm{x}}-\ln \sqrt{\left(1+\mathrm{e}^{2 \mathrm{x}}\right)}\) the \(\mathrm{dy} / \mathrm{d} \mathrm{x}\) is (a) \(\mathrm{e}^{\mathrm{x}} \tan ^{-1} \mathrm{e}^{\mathrm{x}}\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(\tan ^{-1} \mathrm{e}^{\mathrm{x}}\right)\right]\) (c) \(\tan ^{-1} e^{x}\) (d) none of these
If \(x=\tan t+\cot t, y=2 \log (\cot t)\) then \((d y / d x)=\) (a) \(-\tan 2 t\) (b) \(\tan 2 \mathrm{t}\) (c) \(\sin 2 \mathrm{t}\) (d) \(\cos 2 t\)
curve \(\mathrm{y}=(3 / 2) \sin 2 \theta, \mathrm{x}=\mathrm{e}^{\theta} \cdot \sin \theta, 0<2\) for which value of \(\theta\) tangent is parallel to X-axis? (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
If \(y=\cos ^{-1} \mid\left[\left(3 x+4 \sqrt{ \left.\left(1-x^{2}\right)\right) / 5}\right] \mid\right.\) then \((\operatorname{dy} / d x)=\) (a) \(\left.\left[\\{-1\\} /\left\\{\sqrt{(} 1-\mathrm{x}^{2}\right)\right\\}\right]\) (b) \(\left[2 /\left\\{\sqrt{\left. \left.\left(1-\mathrm{x}^{2}\right)\right\\}\right]}\right.\right.\) (c) \(\left[5 /\left\\{3 \sqrt{\left. \left.\left(1-x^{2}\right)\right\\}\right]}\right.\right.\) (d) \(\left[\\{-3\\} /\left\\{5 \sqrt{\left. \left.\left(1-x^{2}\right)\right\\}\right]}\right.\right.\)
The slope of the tangent at \((2,-1)\) for the curve \(x=t^{2}+3 t-8\) and \(y=2 t^{2}-2 t-5\) is (a) \((6 / 7)\) (b) \(-6\) (c) \((22 / 7)\) (d) \(7 / 6\) )
What do you think about this solution?
We value your feedback to improve our textbook solutions.