Chapter 10: Problem 832
If two variables \(x\) and \(y\) and \(x>0 . x y=1\) then minimum value of \(\mathrm{x}+\mathrm{y}\) is (a) 1 (b) 2 (c) \(2(1 / 2)\) (d) \(3(1 / 3)\)
Chapter 10: Problem 832
If two variables \(x\) and \(y\) and \(x>0 . x y=1\) then minimum value of \(\mathrm{x}+\mathrm{y}\) is (a) 1 (b) 2 (c) \(2(1 / 2)\) (d) \(3(1 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{f}(\mathrm{x})=[\mathrm{x} /(\sin \mathrm{x})]\) and \(\mathrm{g}(\mathrm{x})=[\mathrm{x} /(\tan \mathrm{x})]\) where \(0<\mathrm{x} \leq 1\) than in this interval (a) both \(\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})\) are increasing function (b) both \(\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})\) are decreasing function (c) \(\mathrm{f}(\mathrm{x})\) is an increasing function (d) \(\mathrm{g}(\mathrm{x})\) is an increasing function
For \((\mathrm{d} / \mathrm{dx}) \log \left|\mathrm{e}^{\mathrm{x}}[(\mathrm{x}-4) /(\mathrm{x}+4)]^{(3 / 4)}\right|\) at \(\mathrm{x}=5\) then \((\mathrm{dy} / \mathrm{d} \mathrm{x})\) \(\begin{array}{llll}\text { (a) }(5 / 3) & \text { (b) }(3 / 5) & \text { (c) }-(3 / 5) & \text { (d) }-(5 / 3)\end{array}\)
If \(\mathrm{f}^{\prime}(\mathrm{x})=-\mathrm{f}(\mathrm{x})\) and \(\mathrm{g}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})\) and \(\mathrm{F}(\mathrm{x})=|[\mathrm{f}(\mathrm{x} / 2)]|^{2}+|[\mathrm{g}(\mathrm{x} / 2)]|^{2}\) and \(F(5)=5\) then \(F(10)=\) (a) 5 (b) 10 (c) (d) 15
If the curves \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}=6\) and \(\mathrm{ax}^{2}+4 \mathrm{y}^{2}=4\) intersect orthogonally than a = (a) 2 (b) 1 (c) 3 (d) \(-3\)
\(\mathrm{f}(\mathrm{x})=\mathrm{x} \cdot \sin (1 / \mathrm{x})\) and \(\mathrm{x} \in[-1,1]\). Also \(\mathrm{f}(0)=0\) then. (a) \(\mathrm{f}(\mathrm{x})\) is continuous in \([-1,1]\) (b) Roll's theorem is applicable in \([-1,1]\) (c) First mean value theorem is applicable in \([-1,1]\) (d) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.