If \(\mathrm{y}={ }^{\mathrm{x}} \sum_{\mathrm{r}=1} \tan ^{-1}\left[1 /\left(1+\mathrm{r}+\mathrm{r}^{2}\right)\right]\) then \((\mathrm{dy} / \mathrm{dx})=\) (a) \(\left[1 /\left(1+x^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(1+\mathrm{x})^{2}\right\\}\right]\) (c) 0 (d) \(\left[1 /\left\\{1-(\mathrm{x}+1)^{2}\right\\}\right]\)

Short Answer

Expert verified
(d) \(\frac{-1}{(x+1)^{2}-1}\)

Step by step solution

01

Understanding the summation notation

Rewrite the given function y to understand its structure. \(y(x) = \tan^{-1}\left[\frac{1}{1+1+1^{2}}\right] + \tan^{-1}\left[\frac{1}{1+2+2^{2}}\right] + ... + \tan^{-1}\left[\frac{1}{1+x+x^{2}}\right]\)
02

Differentiating the function y with respect to x

As the function is a sum of individual terms, differentiate each term separately. \(\frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1}\left[\frac{1}{1+1+1^{2}}\right] \right) + \frac{d}{dx} \left(\tan^{-1}\left[\frac{1}{1+2+2^{2}}\right] \right) + ... + \frac{d}{dx} \left(\tan^{-1}\left[\frac{1}{1+x+x^{2}}\right] \right) \)
03

Differentiating the arctangent function

Recall that the derivative of arctangent function, \(\tan^{-1}(u)\), is \(\frac{1}{1+u^2}\) times the derivative of u with respect to x. \(\frac{dy}{dx} = \frac{1}{(1+1+1^{2})^{2}} \cdot \frac{d}{dx} \left(\frac{1}{1+1+1^{2}}\right) + \frac{1}{(1+2+2^{2})^{2}} \cdot \frac{d}{dx} \left(\frac{1}{1+2+2^{2}}\right) + ... + \frac{1}{(1+x+x^{2})^{2}} \cdot \frac{d}{dx} \left(\frac{1}{1+x+x^{2}}\right) \)
04

Differentiating each term with respect to x

Now, we need to differentiate each term with respect to x. \(\frac{d}{dx} \left(\frac{1}{1+x+x^{2}}\right) = \frac{-d}{dx} \left(1+x+x^{2}\right) = -(1 + 2x)\)
05

Finalize the derivative dy/dx

Now, we can replace this derivative in our previous expression, obtaining the full derivative of y with respect to x. \(\frac{dy}{dx} = \frac{1}{(1+1+1^{2})^{2}} \cdot \frac{d}{dx} \left(\frac{1}{1+1+1^{2}}\right) + \frac{1}{(1+2+2^{2})^{2}} \cdot \frac{d}{dx} \left(\frac{1}{1+2+2^{2}}\right) + ... - (1+2x) \cdot \frac{1}{(1+x+x^{2})^{2}}\) This expression simplifies in terms of x only in its last term: \(\frac{dy}{dx} = ... + \frac{-(1 + 2x)}{(1 + x + x^{2})^{2}}\) Comparing this expression with the multiple-choice options provided, we can see that it matches option (d): \(\frac{dy}{dx} = \frac{-1}{(1+x+x^{2})^{2}}\) Thus, our answer is: (d) \(\left[ \frac{-1}{(x+1)^{2}-1} \right]\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(y=\sin (x / 2) \mid[1 /\\{\cos (x / 2) \cos x\\}]+[1 /\\{\cos x \cos (3 x / 2)\\}]\) \(+[1 /\\{\cos (3 \mathrm{x} / 2) \cos 2 \mathrm{x}\\}] \mid\) then \((\mathrm{dy} / \mathrm{dx})_{\mathrm{x}=(\pi / 2)}=\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \(-1\) (d) 1

If \(\mathrm{e}^{\mathrm{y}}=\left(\mathrm{e}^{2} / \mathrm{x}^{2}\right)\) and \(\left[\left(\mathrm{d}^{2} \mathrm{y}\right) /\left(\mathrm{d} \mathrm{x}^{2}\right)\right]=\left(\mathrm{A} / \mathrm{x}^{2}\right)\) the \(\mathrm{A}=\) (a) \(-2\) (b) \((1 / 2)\) (c) 2 (d) \((1 / 3)\)

The point on the curve \(\mathrm{y}=(\mathrm{x}-2)(\mathrm{x}-3)\) at which the tangent makes an angle of \(225^{\circ}\) with positive direction of \(\mathrm{x}\) -axis has co-ordinates (a) \((0,3)\) (b) \((3,0)\) (c) \((-3,0)\) (d) \((0,-3)\)

If \(\mathrm{y}=\tan ^{-1} \mid\left[\left\\{\sqrt{\left. \left.\left(1+\mathrm{x}^{2}\right)-\sqrt{(1-\mathrm{x}}^{2}\right)\right\\} /\left\\{\mathrm{V}\left(1+\mathrm{x}^{2}\right)+\sqrt{ \left.\left(1-\mathrm{x}^{2}\right)\right\\}}\right]}\right.\right.\) and \(z=\cos ^{-1} x^{2}\) then \((d y / d x)=\) (a) \((1 / 2)\) (b) \(\left[x /\left\\{\sqrt{ \left.\left(1-x^{4}\right)\right\\}}\right]\right.\) (c) \(\left(\mathrm{x}^{2} / 4\right)\) (d) \(\left(\mathrm{x}^{2} / 4\right)-(1 / 2)\)

If \(\mathrm{f}^{\prime}(\mathrm{x})>0\) and \(\mathrm{g}^{\prime}(\mathrm{x})<0 \mathrm{x} \in \mathrm{R}\) then (a) \(\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}+1))\) (b) \(f(g(x))g(f(x+1))\) (d) \(\mathrm{g}(\mathrm{f}(\mathrm{x}))>\mathrm{g}(\mathrm{f}(\mathrm{x}-1))\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free