Chapter 10: Problem 844
Equation of the tangent of the curvey \(\mathrm{y}=1-\mathrm{e}^{(\mathrm{X} / 2)}\) when intersect to \(\mathrm{y}\) -axis than \(=\) (a) \(x+y=0\) (b) \(x+2 y=0\) (c) \(2 \mathrm{x}+\mathrm{y}=0\) (d) \(x-y=0\)
Chapter 10: Problem 844
Equation of the tangent of the curvey \(\mathrm{y}=1-\mathrm{e}^{(\mathrm{X} / 2)}\) when intersect to \(\mathrm{y}\) -axis than \(=\) (a) \(x+y=0\) (b) \(x+2 y=0\) (c) \(2 \mathrm{x}+\mathrm{y}=0\) (d) \(x-y=0\)
All the tools & learning materials you need for study success - in one app.
Get started for free
if \(y=\cos x^{2}+5[(3 / x)+4]^{6}\) then \(d y / d x\) is (a) \(-2 \mathrm{x} \sin \mathrm{x}^{2}+90 \mathrm{x}^{-2}\left(3 \mathrm{x}^{-1}+4\right)^{5}\) (b) \(-2 \mathrm{x} \sin \mathrm{x}^{2}+30 \mathrm{x}^{-2}\left(3 \mathrm{x}^{-1}+4\right)^{5}\) (c) \(+2 \mathrm{x} \sin \mathrm{x}^{2}-90 \mathrm{x}^{-2}\left(3 \mathrm{x}^{-1}+4\right)^{6}\) (d) \(-2 \mathrm{x} \sin \mathrm{x}^{2}-90 \mathrm{x}^{-2}\left(3 \mathrm{x}^{-1}+4\right)^{5}\)
Let \(\mathrm{f}(\mathrm{x})=\sqrt{(\mathrm{x}-1)}+\sqrt{(\mathrm{x}+24-10 \sqrt{(\mathrm{x}-1})) ; 1<\mathrm{x}<26 \text { be real }}\) valued function Then \(f^{\prime}(x)=\) for \(1<\mathrm{x}<26\) is (a) 0 (b) \(\overline{[1 /(\sqrt{1}-1)]}\) (c) \(2 \sqrt{(x-1)-5}\) (d) \(\sqrt{(x-1)+5}\)
Derivative of function \(\mathrm{f}(\mathrm{x})\left[\mathrm{x}^{2} /\left(1+\sin ^{2} \mathrm{x}\right)\right]\) is (a) Even function (b) Odd function (c) Not define (d) Increasing Function
If \(y=(x \log x)^{\log \log x}\) for \((d y / d x)=A^{\log \log x-1}(B+(\log x+2) \log\) \(\log x\) ) then \(A B=\) (a) \(x \log x\) (b) \(x(\log x)^{2}\) (c) \(x^{2} \cdot \log x\) (d) \(\log x\)
If \(x y+x \cdot e^{-y}+y \cdot e^{x}=x^{2}\) and \((d y / d x)=\left[\left(A+y+e^{-y}-2 x\right) /\right.\) \(\left.\left(\mathrm{B}+\mathrm{e}^{\mathrm{x}}+\mathrm{x}\right)\right]\) then \(\mathrm{A}+\mathrm{B}=\) (a) \(\mathrm{ye}^{\mathrm{x}}+\mathrm{xe}^{-\mathrm{y}}\) (b) \(y e^{x}-x e^{-y}\) (c) \(\mathrm{ye}^{-\mathrm{x}}+\mathrm{xe}^{-\mathrm{y}}\) (d) \(\mathrm{ye}^{\mathrm{x}}+\mathrm{xe}^{\mathrm{y}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.