Chapter 10: Problem 844
Equation of the tangent of the curvey \(\mathrm{y}=1-\mathrm{e}^{(\mathrm{X} / 2)}\) when intersect to \(\mathrm{y}\) -axis than \(=\) (a) \(x+y=0\) (b) \(x+2 y=0\) (c) \(2 \mathrm{x}+\mathrm{y}=0\) (d) \(x-y=0\)
Chapter 10: Problem 844
Equation of the tangent of the curvey \(\mathrm{y}=1-\mathrm{e}^{(\mathrm{X} / 2)}\) when intersect to \(\mathrm{y}\) -axis than \(=\) (a) \(x+y=0\) (b) \(x+2 y=0\) (c) \(2 \mathrm{x}+\mathrm{y}=0\) (d) \(x-y=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}^{2}=\mathrm{p}(\mathrm{x})\) is polynomial function more than 3 degree then \(2(\mathrm{~d} / \mathrm{dx})\left|\mathrm{y}^{3} \mathrm{y}_{2}\right|=\) (a) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (b) \(\mathrm{p}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (c) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime \prime}(\mathrm{x})\) (d) \(p(x) \cdot p^{\prime \prime \prime}(x)\)
If \(\mathrm{y}=3 \mathrm{x}^{(3 / 2)}(\mathrm{x}-1)\) then \(|[\mathrm{dy} / \mathrm{d} \mathrm{x}]|_{(\mathrm{x}=1)}=\) (a) 6 (b) 3 (c) 1 (d) 0
If \(y=\sin (x / 2) \mid[1 /\\{\cos (x / 2) \cos x\\}]+[1 /\\{\cos x \cos (3 x / 2)\\}]\) \(+[1 /\\{\cos (3 \mathrm{x} / 2) \cos 2 \mathrm{x}\\}] \mid\) then \((\mathrm{dy} / \mathrm{dx})_{\mathrm{x}=(\pi / 2)}=\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \(-1\) (d) 1
If \(\mathrm{m}=\tan \theta\) is the slope of the tangent to the curve \(\mathrm{e}\) \(\mathrm{y}=1+\mathrm{x}^{2}\) than (a) \(|\tan \theta| \geq 1\) (b) \(|\tan \theta|<1\) (c) \(\tan \theta<1\) (d) \(|\tan \theta| \leq 1\)
The point on the curve \(\mathrm{y}=(\mathrm{x}-2)(\mathrm{x}-3)\) at which the tangent makes an angle of \(225^{\circ}\) with positive direction of \(\mathrm{x}\) -axis has co-ordinates (a) \((0,3)\) (b) \((3,0)\) (c) \((-3,0)\) (d) \((0,-3)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.