Chapter 10: Problem 847
curve \(\mathrm{y}=(3 / 2) \sin 2 \theta, \mathrm{x}=\mathrm{e}^{\theta} \cdot \sin \theta, 0<2\) for which value of \(\theta\) tangent is parallel to X-axis? (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
Chapter 10: Problem 847
curve \(\mathrm{y}=(3 / 2) \sin 2 \theta, \mathrm{x}=\mathrm{e}^{\theta} \cdot \sin \theta, 0<2\) for which value of \(\theta\) tangent is parallel to X-axis? (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}^{2}=\mathrm{p}(\mathrm{x})\) is polynomial function more than 3 degree then \(2(\mathrm{~d} / \mathrm{dx})\left|\mathrm{y}^{3} \mathrm{y}_{2}\right|=\) (a) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (b) \(\mathrm{p}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (c) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime \prime}(\mathrm{x})\) (d) \(p(x) \cdot p^{\prime \prime \prime}(x)\)
If \(x=\tan t+\cot t, y=2 \log (\cot t)\) then \((d y / d x)=\) (a) \(-\tan 2 t\) (b) \(\tan 2 \mathrm{t}\) (c) \(\sin 2 \mathrm{t}\) (d) \(\cos 2 t\)
If function \(\mathrm{f}(\mathrm{x})=\mathrm{ax}^{3}+\mathrm{bx}^{2}+11 \mathrm{x}-6, \mathrm{x} \in[1,3]\) is satisfying Roll's condition and \(c=|2+(1 / \sqrt{3})|\) than \(\mathrm{a}=\) \(\mathrm{b}=\) (a) \(-1,+6\) (b) \(-2,1\) (c) \(-1,(1 / 2)\) (d) \(1,-6\)
If \(\mathrm{y}=\mathrm{x}^{\mathrm{x}}\) and \(\left[\left(\mathrm{d}^{2} \mathrm{y}\right) /\left(\mathrm{d} \mathrm{x}^{2}\right)\right]-(\mathrm{y} / \mathrm{x})=(1 / \alpha) \cdot(\mathrm{dy} / \mathrm{d} \mathrm{x})^{2}\) then (a) \(\mathrm{x}^{\mathrm{y}}\) (b) \(x^{x}\) (c) \(\mathrm{y}^{\mathrm{x}}\) (d) \(x\)
\((\mathrm{d} / \mathrm{d} \mathrm{x})\left[(3 / 4) \cos \mathrm{x}-\cos ^{3} \mathrm{x}\right]\) when \(\mathrm{x}=18^{\circ}\) and \(\sin 54=\sqrt{(5+1)}\) (a) \((3 / 4) \sqrt{5}\) (b) \(3(\sqrt{5}+1)\) (c) \((3 / 16)(\sqrt{5}+1)\) (d) \((3 / 4)(\sqrt{5}+1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.