Chapter 10: Problem 847
curve \(\mathrm{y}=(3 / 2) \sin 2 \theta, \mathrm{x}=\mathrm{e}^{\theta} \cdot \sin \theta, 0<2\) for which value of \(\theta\) tangent is parallel to X-axis? (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
Chapter 10: Problem 847
curve \(\mathrm{y}=(3 / 2) \sin 2 \theta, \mathrm{x}=\mathrm{e}^{\theta} \cdot \sin \theta, 0<2\) for which value of \(\theta\) tangent is parallel to X-axis? (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{A}>0, \mathrm{~B}>0\) and \(\mathrm{A}+\mathrm{B}=(\pi / 3)\) than the maximum value of \(\tan \mathrm{A} \cdot \tan \mathrm{B}\) is (a) \((3 / 2)\) (b) \((1 / 3)\) (c) \((2 / 3)\) (d) 3
\(\mathrm{f}(\mathrm{x})=\mathrm{x} \cdot \sin (1 / \mathrm{x})\) and \(\mathrm{x} \in[-1,1]\). Also \(\mathrm{f}(0)=0\) then. (a) \(\mathrm{f}(\mathrm{x})\) is continuous in \([-1,1]\) (b) Roll's theorem is applicable in \([-1,1]\) (c) First mean value theorem is applicable in \([-1,1]\) (d) none of these
If \(\mathrm{y}=(1 / 3) \log \left[\\{\mathrm{x}+1\\} /\left\\{\mathrm{V}\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right\\}\right]+(1 / \sqrt{3}) \tan ^{-1}\) \([(2 x-1) /(\sqrt{3})]\) then \((d y / d x)=\) (a) \(\left[1 /\left(1+\mathrm{x}^{3}\right)\right]\) (b) \(\left[\left(x^{2}+x+1\right) /(x-1)\right]\) (c) \(\left[1 /\left(1-\mathrm{x}^{3}\right)\right]\) (d) none of these
Equation of the tangent of the curvey \(\mathrm{y}=1-\mathrm{e}^{(\mathrm{X} / 2)}\) when intersect to \(\mathrm{y}\) -axis than \(=\) (a) \(x+y=0\) (b) \(x+2 y=0\) (c) \(2 \mathrm{x}+\mathrm{y}=0\) (d) \(x-y=0\)
\((\mathrm{d} / \mathrm{d} \mathrm{x})\left[\log (1+\sin \mathrm{x})+\log (\sec \\{(\pi / 4)-(\mathrm{x} / 2)\\})^{2}\right]=\) (a) 0 (b) \(4 \mid[(\cos x-\tan x) /(\sin x+\cos x)]\) (c) \(\log _{\mathrm{e}} 2\) (d) \(-\log _{\mathrm{e}} 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.