Chapter 10: Problem 848
\(\mathrm{f}(\mathrm{x})=|\mathrm{x}+2|+|\mathrm{x}-1|\) is (a) increasing in \((-1, \infty)\) (b) increasing in \([-1, \infty]\) (c) decreasing in \((-\infty,-2)\) (d) decreasing in \([-\infty,-2]\)
Chapter 10: Problem 848
\(\mathrm{f}(\mathrm{x})=|\mathrm{x}+2|+|\mathrm{x}-1|\) is (a) increasing in \((-1, \infty)\) (b) increasing in \([-1, \infty]\) (c) decreasing in \((-\infty,-2)\) (d) decreasing in \([-\infty,-2]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn \(\mathrm{a}+\mathrm{b}+\mathrm{c}=0\), than the equation \(3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) has, in the interval \((0,1)\) (a) at least one root (b) at most one root (c) no root (d) Exactly one root exist.
If \(y=\left[\left(\sin ^{2} x\right) /(1-\cot x)\right]+\left[\left(\cos ^{2} x\right) /(1-\tan x)\right]\) and \(\left[\left.[\mathrm{dy} / \mathrm{dx}]\right|_{\mathrm{X}=(\pi / 4)}=\right.\) (a) 0 (b) \(+1\) (c) (d) \(|(1 / 2)|\)
The function \(\mathrm{f}(\mathrm{x})=2 \log (\mathrm{x}-2)-\mathrm{x}^{2}+4 \mathrm{x}+1\) increasing on the interval (a) \((2,3)\) (b) \((1,2)\) (c) \((2,4)\) (d) \((1,3)\)
If \(y=\sin (x / 2) \mid[1 /\\{\cos (x / 2) \cos x\\}]+[1 /\\{\cos x \cos (3 x / 2)\\}]\) \(+[1 /\\{\cos (3 \mathrm{x} / 2) \cos 2 \mathrm{x}\\}] \mid\) then \((\mathrm{dy} / \mathrm{dx})_{\mathrm{x}=(\pi / 2)}=\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \(-1\) (d) 1
Approximate value of \((1.0002)^{3000}\) is (a) \(1.2\) (b) \(1.4\) (c) \(1.6\) (d) \(1.8\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.