Chapter 10: Problem 848
\(\mathrm{f}(\mathrm{x})=|\mathrm{x}+2|+|\mathrm{x}-1|\) is (a) increasing in \((-1, \infty)\) (b) increasing in \([-1, \infty]\) (c) decreasing in \((-\infty,-2)\) (d) decreasing in \([-\infty,-2]\)
Chapter 10: Problem 848
\(\mathrm{f}(\mathrm{x})=|\mathrm{x}+2|+|\mathrm{x}-1|\) is (a) increasing in \((-1, \infty)\) (b) increasing in \([-1, \infty]\) (c) decreasing in \((-\infty,-2)\) (d) decreasing in \([-\infty,-2]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn \(\mathrm{a}+\mathrm{b}+\mathrm{c}=0\), than the equation \(3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) has, in the interval \((0,1)\) (a) at least one root (b) at most one root (c) no root (d) Exactly one root exist.
The function \(f(x)=\left|\left[\left(e^{2 x}-1\right) /\left(e^{2 x}+1\right)\right]\right|\) is (a) Increasing (b) Decreasing (c) Even (d) Strictly increasing
If \(\mathrm{x}=\sqrt\left[\left(1-\mathrm{t}^{2}\right) /\left(1+\mathrm{t}^{2}\right)\right] \text { and } \mathrm{y}=\left[\left\\{\sqrt{\left(1+\mathrm{t}^{2}\right)-\sqrt{ \left.\left(1-\mathrm{t}^{2}\right)\right\\}} /}\right.\right.\) (a) \(-1\) (b) (c) - 2 (d) 2
If \(\mathrm{f}^{\prime}(\mathrm{x})>0\) and \(\mathrm{g}^{\prime}(\mathrm{x})<0
\mathrm{x} \in \mathrm{R}\) then
(a) \(\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}+1))\)
(b) \(f(g(x))
If \(\mathrm{y}={ }^{\mathrm{x}} \sum_{\mathrm{r}=1} \tan ^{-1}\left[1 /\left(1+\mathrm{r}+\mathrm{r}^{2}\right)\right]\) then \((\mathrm{dy} / \mathrm{dx})=\) (a) \(\left[1 /\left(1+x^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(1+\mathrm{x})^{2}\right\\}\right]\) (c) 0 (d) \(\left[1 /\left\\{1-(\mathrm{x}+1)^{2}\right\\}\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.