Chapter 10: Problem 854
If \(y=(x \log x)^{\log \log x}\) for \((d y / d x)=A^{\log \log x-1}(B+(\log x+2) \log\) \(\log x\) ) then \(A B=\) (a) \(x \log x\) (b) \(x(\log x)^{2}\) (c) \(x^{2} \cdot \log x\) (d) \(\log x\)
Chapter 10: Problem 854
If \(y=(x \log x)^{\log \log x}\) for \((d y / d x)=A^{\log \log x-1}(B+(\log x+2) \log\) \(\log x\) ) then \(A B=\) (a) \(x \log x\) (b) \(x(\log x)^{2}\) (c) \(x^{2} \cdot \log x\) (d) \(\log x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}=\log \sqrt{\\{}(1-\cos \mathrm{ax}) /(1+\cos a \mathrm{x})\\}\) then \(|[\mathrm{dy} / \mathrm{dx}]|_{(\mathrm{x}=1)}\) \(=\) (a) a cosec a (b) - a cosec a (c) cosec a (d) - cosec a
If \(\mathrm{y}^{2}=\mathrm{p}(\mathrm{x})\) is polynomial function more than 3 degree then \(2(\mathrm{~d} / \mathrm{dx})\left|\mathrm{y}^{3} \mathrm{y}_{2}\right|=\) (a) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (b) \(\mathrm{p}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (c) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime \prime}(\mathrm{x})\) (d) \(p(x) \cdot p^{\prime \prime \prime}(x)\)
\(\mathrm{f}(\mathrm{x})=\mathrm{x} \cdot \sin (1 / \mathrm{x})\) and \(\mathrm{x} \in[-1,1]\). Also \(\mathrm{f}(0)=0\) then. (a) \(\mathrm{f}(\mathrm{x})\) is continuous in \([-1,1]\) (b) Roll's theorem is applicable in \([-1,1]\) (c) First mean value theorem is applicable in \([-1,1]\) (d) none of these
If the curves \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}=6\) and \(\mathrm{ax}^{2}+4 \mathrm{y}^{2}=4\) intersect orthogonally than a = (a) 2 (b) 1 (c) 3 (d) \(-3\)
If \(\mathrm{y}=\mathrm{x} \tan (\mathrm{x} / 2)\) and \(\mathrm{A}(\mathrm{dy} / \mathrm{dx})-\mathrm{B}=\mathrm{x}\) then \((\mathrm{B} / \mathrm{A})=\) (a) \(\cot (\mathrm{x} / 2)\) (b) \(\tan (\mathrm{x} / 2)\) (c) \(\tan \mathrm{x}\) (d) \(\cot x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.