Chapter 10: Problem 854
If \(y=(x \log x)^{\log \log x}\) for \((d y / d x)=A^{\log \log x-1}(B+(\log x+2) \log\) \(\log x\) ) then \(A B=\) (a) \(x \log x\) (b) \(x(\log x)^{2}\) (c) \(x^{2} \cdot \log x\) (d) \(\log x\)
Chapter 10: Problem 854
If \(y=(x \log x)^{\log \log x}\) for \((d y / d x)=A^{\log \log x-1}(B+(\log x+2) \log\) \(\log x\) ) then \(A B=\) (a) \(x \log x\) (b) \(x(\log x)^{2}\) (c) \(x^{2} \cdot \log x\) (d) \(\log x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe point on the curve \(\mathrm{y}=(\mathrm{x}-2)(\mathrm{x}-3)\) at which the tangent makes an angle of \(225^{\circ}\) with positive direction of \(\mathrm{x}\) -axis has co-ordinates (a) \((0,3)\) (b) \((3,0)\) (c) \((-3,0)\) (d) \((0,-3)\)
For every \(\mathrm{x}, \mathrm{x} \in \mathrm{R}, \mathrm{f}(\mathrm{x})=(\mathrm{a}+2) \mathrm{x}^{3}-3 \mathrm{ax}^{2}+9 \mathrm{ax}-1\) the function is decreasing then a (a) \((-4,-3)\) (b) \(\overline{(-3,-2)}\) (c) \((3,0)\) (d) \((-1,-3)\)
If \(x^{2} e^{y}+2 x y e^{x}+23=0\) then \((d y / d x)=\) (a) \(2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2 \mathrm{y}(\mathrm{x}+1)\) (b) \(2 \mathrm{xe}^{\mathrm{x}-\mathrm{y}}-3 \mathrm{y}(\mathrm{x}+1)\) (c) \(\left[\left\\{-2 x e^{y}-e^{x} \cdot 2 y(x+1)\right\\} /\left\\{x\left(x e^{y}+e^{x} \cdot 2\right)\right\\}\right]\) (d) \(2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}-\mathrm{y}(\mathrm{x}+1)\)
If \(\mathrm{y}=\mathrm{x}^{\mathrm{x}}\) and \(\left[\left(\mathrm{d}^{2} \mathrm{y}\right) /\left(\mathrm{d} \mathrm{x}^{2}\right)\right]-(\mathrm{y} / \mathrm{x})=(1 / \alpha) \cdot(\mathrm{dy} / \mathrm{d} \mathrm{x})^{2}\) then (a) \(\mathrm{x}^{\mathrm{y}}\) (b) \(x^{x}\) (c) \(\mathrm{y}^{\mathrm{x}}\) (d) \(x\)
If \(\mathrm{f}^{\prime}(\mathrm{x})>0\) and \(\mathrm{g}^{\prime}(\mathrm{x})<0
\mathrm{x} \in \mathrm{R}\) then
(a) \(\mathrm{f}(\mathrm{g}(\mathrm{x}))>\mathrm{f}(\mathrm{g}(\mathrm{x}+1))\)
(b) \(f(g(x))
What do you think about this solution?
We value your feedback to improve our textbook solutions.