Chapter 10: Problem 865
The Roll's theorem is applicable in the interval \(-1 \leq \mathrm{x} \leq 1\) for the function (a) \(\mathrm{f}(\mathrm{x})=\mathrm{x}\) (b) \(f(x)=x^{2}\) (c) \(f(x)=2 x^{2}+3\) (d) \(\mathrm{f}(\mathrm{x})=|\mathrm{x}|\)
Chapter 10: Problem 865
The Roll's theorem is applicable in the interval \(-1 \leq \mathrm{x} \leq 1\) for the function (a) \(\mathrm{f}(\mathrm{x})=\mathrm{x}\) (b) \(f(x)=x^{2}\) (c) \(f(x)=2 x^{2}+3\) (d) \(\mathrm{f}(\mathrm{x})=|\mathrm{x}|\)
All the tools & learning materials you need for study success - in one app.
Get started for free
For every \(\mathrm{x}, \mathrm{x} \in \mathrm{R}, \mathrm{f}(\mathrm{x})=(\mathrm{a}+2) \mathrm{x}^{3}-3 \mathrm{ax}^{2}+9 \mathrm{ax}-1\) the function is decreasing then a (a) \((-4,-3)\) (b) \(\overline{(-3,-2)}\) (c) \((3,0)\) (d) \((-1,-3)\)
If \(\mathrm{y}=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))\) and \(\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1\) then \(\mid[\mathrm{dy} / \mathrm{d} \mathrm{x}]_{\mathrm{x} 0}=\) (a) 0 (b) 1 (c) - 1 (d) 2
\(\mathrm{f}\) and \(\mathrm{g}\) are two differentiable function and fog \(=\mathrm{I}\) (Identify function) and \(g^{\prime}(a)=2, g(a)=b\) then \(f^{\prime}(b)=\) (a) 2 (b) \((1 / 2)\) (c) \(-2\) (d) \(-(1 / 2)\)
Derivative of \(\sec ^{-1}\left|\left[1 /\left(2 \mathrm{x}^{2}-1\right)\right]\right|\) w.r.t. \(\sqrt{(1+3 \mathrm{x})}\) at \(\mathrm{x}=[(-1) / 3] \mathrm{is}\) (a) 0 (b) \((1 / 2)\) (c) \((1 / 3)\) (d) 3
The point on the curve \(\mathrm{y}^{2}=12|\mathrm{x}+2 \sin (\mathrm{x} / 2)|\) at which the tangent is parallel to \(\mathrm{x}\) -axis is lie on (a) a line (b) parabola (c) a circle (d) an ellipse
What do you think about this solution?
We value your feedback to improve our textbook solutions.