Chapter 10: Problem 865
The Roll's theorem is applicable in the interval \(-1 \leq \mathrm{x} \leq 1\) for the function (a) \(\mathrm{f}(\mathrm{x})=\mathrm{x}\) (b) \(f(x)=x^{2}\) (c) \(f(x)=2 x^{2}+3\) (d) \(\mathrm{f}(\mathrm{x})=|\mathrm{x}|\)
Chapter 10: Problem 865
The Roll's theorem is applicable in the interval \(-1 \leq \mathrm{x} \leq 1\) for the function (a) \(\mathrm{f}(\mathrm{x})=\mathrm{x}\) (b) \(f(x)=x^{2}\) (c) \(f(x)=2 x^{2}+3\) (d) \(\mathrm{f}(\mathrm{x})=|\mathrm{x}|\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe second order derivative of a \(\sin ^{3} \propto\) with respect to a \(\cos ^{3} \propto\) at \(\alpha=(\pi / 4)\) (a) \([(4 \sqrt{2}) / 3 \mathrm{a}]\) (b) 2 (c) \([1 /(12 \mathrm{a})]\) (d) 0
Let \(\mathrm{f}(\mathrm{x})\) satisfy the requirement of lag ranger mean value theorm in \([0,2]\). If \(\mathrm{f}(0)=0\) and \(|\mathrm{f}(\mathrm{x})| \leq(1 / 2)\) for all \(\mathrm{x}\) in \(|0,2|\) then (a) \(\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 2\) (b) \(|\mathrm{f}(\mathrm{x})| \leq 1\) (c) \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}\) (d) \(\mathrm{f}(\mathrm{x})=3\) for at least one \(\mathrm{x}\) in \((0,2)\)
If \(x=\tan t+\cot t, y=2 \log (\cot t)\) then \((d y / d x)=\) (a) \(-\tan 2 t\) (b) \(\tan 2 \mathrm{t}\) (c) \(\sin 2 \mathrm{t}\) (d) \(\cos 2 t\)
If \(\mathrm{y}=(1 / 3) \log \left[\\{\mathrm{x}+1\\} /\left\\{\mathrm{V}\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right\\}\right]+(1 / \sqrt{3}) \tan ^{-1}\) \([(2 x-1) /(\sqrt{3})]\) then \((d y / d x)=\) (a) \(\left[1 /\left(1+\mathrm{x}^{3}\right)\right]\) (b) \(\left[\left(x^{2}+x+1\right) /(x-1)\right]\) (c) \(\left[1 /\left(1-\mathrm{x}^{3}\right)\right]\) (d) none of these
If \(x^{2} e^{y}+2 x y e^{x}+23=0\) then \((d y / d x)=\) (a) \(2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2 \mathrm{y}(\mathrm{x}+1)\) (b) \(2 \mathrm{xe}^{\mathrm{x}-\mathrm{y}}-3 \mathrm{y}(\mathrm{x}+1)\) (c) \(\left[\left\\{-2 x e^{y}-e^{x} \cdot 2 y(x+1)\right\\} /\left\\{x\left(x e^{y}+e^{x} \cdot 2\right)\right\\}\right]\) (d) \(2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}-\mathrm{y}(\mathrm{x}+1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.