Chapter 10: Problem 873
In \(\mathrm{a}+\mathrm{b}+\mathrm{c}=0\), than the equation \(3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) has, in the interval \((0,1)\) (a) at least one root (b) at most one root (c) no root (d) Exactly one root exist.
Chapter 10: Problem 873
In \(\mathrm{a}+\mathrm{b}+\mathrm{c}=0\), than the equation \(3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) has, in the interval \((0,1)\) (a) at least one root (b) at most one root (c) no root (d) Exactly one root exist.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn which interval \(\mathrm{f}(\mathrm{x})=\sin ^{4} \mathrm{x}+\cos ^{4} \mathrm{x}, \mathrm{x} \in[0,(\pi / 2)]\) is increasing function (a) \(|(\pi / 4),(\pi / 2)|\) (b) \(|0,(\pi / 4)|\) (c) \(|0,(\pi / 2)|\) (d) \(|(\pi / 4),\\{(-\pi) / 2\\}|\)
If \(\mathrm{f}(\mathrm{x})=1+2 \sin \mathrm{x}+3 \cos ^{2} \mathrm{x}, 0 \leq \mathrm{x} \leq(2 / 3)\) then (a) Minimum value of \(\mathrm{x}=(\pi / 2)\) (b) Maximum value of \(\mathrm{x}=\sin ^{-1}(1 / \sqrt{3})\) (c) Minimum value of \(\mathrm{x}=(\pi / 6)\) (d) Maximum value of \(\mathrm{x}=\sin ^{-1}(1 / 6)\)
If \(\mathrm{y}=3 \mathrm{x}^{(3 / 2)}(\mathrm{x}-1)\) then \(|[\mathrm{dy} / \mathrm{d} \mathrm{x}]|_{(\mathrm{x}=1)}=\) (a) 6 (b) 3 (c) 1 (d) 0
The second order derivative of a \(\sin ^{3} \propto\) with respect to a \(\cos ^{3} \propto\) at \(\alpha=(\pi / 4)\) (a) \([(4 \sqrt{2}) / 3 \mathrm{a}]\) (b) 2 (c) \([1 /(12 \mathrm{a})]\) (d) 0
For the curve \(\mathrm{y}=\left[\mathrm{a}^{3} /\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)\right]\), then length of tangent at \([\mathrm{a},(\mathrm{a} / 2)]\) is (a) \((\sqrt{5} / 2)|\mathrm{a}|\) (b) \(\mid\) a (c) \(\mid \mathrm{a} / 4\) (d) \(\mid \mathrm{a} / 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.