Chapter 10: Problem 873
In \(\mathrm{a}+\mathrm{b}+\mathrm{c}=0\), than the equation \(3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) has, in the interval \((0,1)\) (a) at least one root (b) at most one root (c) no root (d) Exactly one root exist.
Chapter 10: Problem 873
In \(\mathrm{a}+\mathrm{b}+\mathrm{c}=0\), than the equation \(3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) has, in the interval \((0,1)\) (a) at least one root (b) at most one root (c) no root (d) Exactly one root exist.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn which interval \(\mathrm{f}(\mathrm{x})=\sin ^{4} \mathrm{x}+\cos ^{4} \mathrm{x}, \mathrm{x} \in[0,(\pi / 2)]\) is increasing function (a) \(|(\pi / 4),(\pi / 2)|\) (b) \(|0,(\pi / 4)|\) (c) \(|0,(\pi / 2)|\) (d) \(|(\pi / 4),\\{(-\pi) / 2\\}|\)
If \(\mathrm{f}(\mathrm{x})=1+2 \sin \mathrm{x}+3 \cos ^{2} \mathrm{x}, 0 \leq \mathrm{x} \leq(2 / 3)\) then (a) Minimum value of \(\mathrm{x}=(\pi / 2)\) (b) Maximum value of \(\mathrm{x}=\sin ^{-1}(1 / \sqrt{3})\) (c) Minimum value of \(\mathrm{x}=(\pi / 6)\) (d) Maximum value of \(\mathrm{x}=\sin ^{-1}(1 / 6)\)
if \(8 \mathrm{f}(\mathrm{x})+6 \mathrm{f}(1 / \mathrm{x})=\mathrm{x}+5\) and \(\mathrm{y}=\mathrm{x}^{2} \mathrm{f}(\mathrm{x})\) then \((\mathrm{dy} / \mathrm{d} \mathrm{x})\) at \(\mathrm{x}=-1 \mathrm{is}\) (a) \(\\{(-1) /(14)\\}\) (b) 0 (c) \((1 / 14)\) (d) none of there
If \(f\) is an even function and \(f^{\prime}(x)\) is define than \(f^{\prime}(x)+f^{\prime}(-x)\) (a) 0 (b) \(<0\) \((\mathrm{c}) \neq 0\) \((\mathrm{d})>0\)
If \(y=\left[\left(\sin ^{2} x\right) /(1-\cot x)\right]+\left[\left(\cos ^{2} x\right) /(1-\tan x)\right]\) and \(\left[\left.[\mathrm{dy} / \mathrm{dx}]\right|_{\mathrm{X}=(\pi / 4)}=\right.\) (a) 0 (b) \(+1\) (c) (d) \(|(1 / 2)|\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.