Let \(\mathrm{f}(\mathrm{x})\) satisfy the requirement of lag ranger mean value theorm in \([0,2]\). If \(\mathrm{f}(0)=0\) and \(|\mathrm{f}(\mathrm{x})| \leq(1 / 2)\) for all \(\mathrm{x}\) in \(|0,2|\) then (a) \(\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 2\) (b) \(|\mathrm{f}(\mathrm{x})| \leq 1\) (c) \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}\) (d) \(\mathrm{f}(\mathrm{x})=3\) for at least one \(\mathrm{x}\) in \((0,2)\)

Short Answer

Expert verified
The correct answer is that only statement (b) is true, as we have shown that \(|\mathrm{f}(\mathrm{x})| \leq 1\) for all \(x\) in \([0,2]\). Statements (a), (c), and (d) are false based on our analysis using Lagrange's Mean Value Theorem and the given conditions for the function \(\mathrm{f}(\mathrm{x})\).

Step by step solution

01

Determine the upper bound of the derivative

Using the given information, we have that \(|\mathrm{f}(\mathrm{x})| \leq \frac{1}{2}\) on the interval \([0, 2]\). The LMVT states that there exists a value \(c\) such that \(\frac{\mathrm{f}(2) - \mathrm{f}(0)}{2-0} = \mathrm{f}^{\prime}(c)\). Given that \(\mathrm{f}(0) = 0\), we have: \(\left|\frac{\mathrm{f}(2)}{2}\right| = \left|\mathrm{f}^{\prime}(c)\right|\) is the maximum absolute value of the derivative on the interval. We already know that \(|\mathrm{f}(x)|\leq \frac{1}{2}\), so it follows that: $$\left|f'(c)\right| = \left|\frac{f(2)}{2}\right| \leq \frac{1}{2}$$ Since \(|\mathrm{f}^{\prime}(c)| \leq \frac{1}{2}\), we can conclude that option (a) is false.
02

Prove or disprove remaining statements

(b) The statement claims that \(|\mathrm{f}(\mathrm{x})| \leq 1\) for all \(x\) in \([0,2]\), which is true as we already have \(|\mathrm{f}(\mathrm{x})| \leq \frac{1}{2}\), which is indeed less than or equal to \(1\). So, option (b) is true. (c) To prove or disprove this statement, we need to show whether \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}\) on the interval \([0,2]\). However, we already know that the absolute value of the function is bounded by \(\frac{1}{2}\) on the interval \([0, 2]\). Thus, this function cannot satisfy the given condition, and option (c) is false. (d) To prove or disprove this statement, we must determine whether there exists at least one \(x\) in \((0,2)\) for which \(\mathrm{f}(\mathrm{x})=3\). Although we know that \(|\mathrm{f}(\mathrm{x})| \leq \frac{1}{2}\) for all \(x\) in this interval, we can directly show that \(|\mathrm{f}(x)|\leq 3\) cannot hold given the established bounds of the absolute value of the function. Therefore, option (d) is false. Various aspects have been briefly touched upon in the above steps, but based on our analysis we can preliminarily conclude as follows: (a) False (b) True (c) False (d) False

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(x^{2} e^{y}+2 x y e^{x}+23=0\) then \((d y / d x)=\) (a) \(2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2 \mathrm{y}(\mathrm{x}+1)\) (b) \(2 \mathrm{xe}^{\mathrm{x}-\mathrm{y}}-3 \mathrm{y}(\mathrm{x}+1)\) (c) \(\left[\left\\{-2 x e^{y}-e^{x} \cdot 2 y(x+1)\right\\} /\left\\{x\left(x e^{y}+e^{x} \cdot 2\right)\right\\}\right]\) (d) \(2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}-\mathrm{y}(\mathrm{x}+1)\)

\(\mathrm{f}\) and \(\mathrm{g}\) are two differentiable function and fog \(=\mathrm{I}\) (Identify function) and \(g^{\prime}(a)=2, g(a)=b\) then \(f^{\prime}(b)=\) (a) 2 (b) \((1 / 2)\) (c) \(-2\) (d) \(-(1 / 2)\)

If \(\mathrm{y}=\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right] \tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+3 \mathrm{x}+3\right)\right]\) \(+\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+5 \mathrm{x}+7\right)\right] \ldots \ldots\) to \(\mathrm{n}\) terms then \((\mathrm{dy} / \mathrm{d} \mathrm{x})\) \(=\) (a) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]-\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (c) \(\left[2 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (d) \(\sum \mathrm{n}\)

\((\mathrm{d} / \mathrm{d} \mathrm{x})\left[(3 / 4) \cos \mathrm{x}-\cos ^{3} \mathrm{x}\right]\) when \(\mathrm{x}=18^{\circ}\) and \(\sin 54=\sqrt{(5+1)}\) (a) \((3 / 4) \sqrt{5}\) (b) \(3(\sqrt{5}+1)\) (c) \((3 / 16)(\sqrt{5}+1)\) (d) \((3 / 4)(\sqrt{5}+1)\)

If \(\mathrm{f}(\mathrm{x})=1+2 \sin \mathrm{x}+3 \cos ^{2} \mathrm{x}, 0 \leq \mathrm{x} \leq(2 / 3)\) then (a) Minimum value of \(\mathrm{x}=(\pi / 2)\) (b) Maximum value of \(\mathrm{x}=\sin ^{-1}(1 / \sqrt{3})\) (c) Minimum value of \(\mathrm{x}=(\pi / 6)\) (d) Maximum value of \(\mathrm{x}=\sin ^{-1}(1 / 6)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free