Chapter 10: Problem 876
The function \(\mathrm{f}(\mathrm{x})=2 \log (\mathrm{x}-2)-\mathrm{x}^{2}+4 \mathrm{x}+1\) increasing on the interval (a) \((2,3)\) (b) \((1,2)\) (c) \((2,4)\) (d) \((1,3)\)
Chapter 10: Problem 876
The function \(\mathrm{f}(\mathrm{x})=2 \log (\mathrm{x}-2)-\mathrm{x}^{2}+4 \mathrm{x}+1\) increasing on the interval (a) \((2,3)\) (b) \((1,2)\) (c) \((2,4)\) (d) \((1,3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the curves \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}=6\) and \(\mathrm{ax}^{2}+4 \mathrm{y}^{2}=4\) intersect orthogonally than a = (a) 2 (b) 1 (c) 3 (d) \(-3\)
If \(y=(x \log x)^{\log \log x}\) for \((d y / d x)=A^{\log \log x-1}(B+(\log x+2) \log\) \(\log x\) ) then \(A B=\) (a) \(x \log x\) (b) \(x(\log x)^{2}\) (c) \(x^{2} \cdot \log x\) (d) \(\log x\)
If \(\mathrm{f}(\mathrm{x})=|\mathrm{x}-1|\) any
\(\mathrm{g}(\mathrm{x})=\mathrm{f}\left(\mathrm{f}(\mathrm{f}(\mathrm{x}))\right.\)
the for \(\mathrm{x}>2, \mathrm{~g}^{\prime}(\mathrm{x})\) is equal to
(a) 1 for all \(x>2\)
(b) 1 for \(2
If \(\mathrm{f}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}\) and \(\mathrm{f}(0)=\mathrm{f}^{\prime}(\mathrm{x})=2\) then \(\mathrm{f}(1)=\) (a) 4 (b) 2 (c) 1 (d) \(-4\)
\(\mathrm{f}(\mathrm{x})=|[\mathrm{x}] \mathrm{x}|,-1 \leq \mathrm{x} \leq 2\) then (a) continuous at \(\mathrm{x}=0\) (b) discontinuous at \(\mathrm{x}=0\) (c) diffemtiable at \(\mathrm{x}=0\) (d) continuous at \(\mathrm{x}=2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.