Chapter 10: Problem 881
The rate of change of function \(\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{5}-5 \mathrm{x}^{3}+5 \mathrm{x}-7\) is minimum when \(\mathrm{x}\) is (a) 0 (b) \((1 / \sqrt{2})\) (c) \(\sqrt{2}\) (d) \(\pm(1 / \sqrt{2})\)
Chapter 10: Problem 881
The rate of change of function \(\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{5}-5 \mathrm{x}^{3}+5 \mathrm{x}-7\) is minimum when \(\mathrm{x}\) is (a) 0 (b) \((1 / \sqrt{2})\) (c) \(\sqrt{2}\) (d) \(\pm(1 / \sqrt{2})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}=\tan ^{-1} \mid\left[\left\\{\sqrt{\left. \left.\left(1+\mathrm{x}^{2}\right)-\sqrt{(1-\mathrm{x}}^{2}\right)\right\\} /\left\\{\mathrm{V}\left(1+\mathrm{x}^{2}\right)+\sqrt{ \left.\left(1-\mathrm{x}^{2}\right)\right\\}}\right]}\right.\right.\) and \(z=\cos ^{-1} x^{2}\) then \((d y / d x)=\) (a) \((1 / 2)\) (b) \(\left[x /\left\\{\sqrt{ \left.\left(1-x^{4}\right)\right\\}}\right]\right.\) (c) \(\left(\mathrm{x}^{2} / 4\right)\) (d) \(\left(\mathrm{x}^{2} / 4\right)-(1 / 2)\)
curve \(\mathrm{y}=(3 / 2) \sin 2 \theta, \mathrm{x}=\mathrm{e}^{\theta} \cdot \sin \theta, 0<2\) for which value of \(\theta\) tangent is parallel to X-axis? (a) 0 (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
If \(\mathrm{x}=\sqrt\left[\left(1-\mathrm{t}^{2}\right) /\left(1+\mathrm{t}^{2}\right)\right] \text { and } \mathrm{y}=\left[\left\\{\sqrt{\left(1+\mathrm{t}^{2}\right)-\sqrt{ \left.\left(1-\mathrm{t}^{2}\right)\right\\}} /}\right.\right.\) (a) \(-1\) (b) (c) - 2 (d) 2
If \(\mathrm{y}=\mathrm{x} \tan (\mathrm{x} / 2)\) and \(\mathrm{A}(\mathrm{dy} / \mathrm{dx})-\mathrm{B}=\mathrm{x}\) then \((\mathrm{B} / \mathrm{A})=\) (a) \(\cot (\mathrm{x} / 2)\) (b) \(\tan (\mathrm{x} / 2)\) (c) \(\tan \mathrm{x}\) (d) \(\cot x\)
If \(\mathrm{y}={ }^{\mathrm{x}} \sum_{\mathrm{r}=1} \tan ^{-1}\left[1 /\left(1+\mathrm{r}+\mathrm{r}^{2}\right)\right]\) then \((\mathrm{dy} / \mathrm{dx})=\) (a) \(\left[1 /\left(1+x^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(1+\mathrm{x})^{2}\right\\}\right]\) (c) 0 (d) \(\left[1 /\left\\{1-(\mathrm{x}+1)^{2}\right\\}\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.