Chapter 10: Problem 884
The function \(f(x)=\left|\left[\left(e^{2 x}-1\right) /\left(e^{2 x}+1\right)\right]\right|\) is (a) Increasing (b) Decreasing (c) Even (d) Strictly increasing
Chapter 10: Problem 884
The function \(f(x)=\left|\left[\left(e^{2 x}-1\right) /\left(e^{2 x}+1\right)\right]\right|\) is (a) Increasing (b) Decreasing (c) Even (d) Strictly increasing
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}^{2}=\mathrm{p}(\mathrm{x})\) is polynomial function more than 3 degree then \(2(\mathrm{~d} / \mathrm{dx})\left|\mathrm{y}^{3} \mathrm{y}_{2}\right|=\) (a) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (b) \(\mathrm{p}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime}(\mathrm{x})\) (c) \(\mathrm{p}^{\prime}(\mathrm{x}) \cdot \mathrm{p}^{\prime \prime \prime}(\mathrm{x})\) (d) \(p(x) \cdot p^{\prime \prime \prime}(x)\)
Equation of the tangent for the curve \(\mathrm{y}=\mathrm{a} \log \sec (\mathrm{x} / \mathrm{a})\) at \(\mathrm{x}=\mathrm{a}\) is (a) \((\mathrm{y}-\mathrm{a} \log \sec 1) \tan 1=\mathrm{x}-\mathrm{a}\) (b) \((\mathrm{x}-\mathrm{a}) \tan 1=(\mathrm{y}-\mathrm{a} \log \sec 1)\) (c) \((\mathrm{x}-\mathrm{a}) \cos 1=((\mathrm{y}-\mathrm{a}) \log \sec 1) \tan 1\) (d) None of these
Equation of the tangent of the curvey \(\mathrm{y}=1-\mathrm{e}^{(\mathrm{X} / 2)}\) when intersect to \(\mathrm{y}\) -axis than \(=\) (a) \(x+y=0\) (b) \(x+2 y=0\) (c) \(2 \mathrm{x}+\mathrm{y}=0\) (d) \(x-y=0\)
If \(\mathrm{y}=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))\) and \(\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1\) then \(\mid[\mathrm{dy} / \mathrm{d} \mathrm{x}]_{\mathrm{x} 0}=\) (a) 0 (b) 1 (c) - 1 (d) 2
If the curves \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}=6\) and \(\mathrm{ax}^{2}+4 \mathrm{y}^{2}=4\) intersect orthogonally than a = (a) 2 (b) 1 (c) 3 (d) \(-3\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.