Chapter 11: Problem 889
\(\int[\mathrm{dx} /(1+\tan \mathrm{x})]=\underline{ }+\mathrm{c}\) (a) \(\log |\sec x+\tan x|\) (b) \(2 \sec ^{2}(\mathrm{x} / 2)\) (c) \(\log \mid \mathrm{x}+\sin \mathrm{x}\) (d) \((1 / 2)[x+\log |\sin x+\cos x|]\)
Chapter 11: Problem 889
\(\int[\mathrm{dx} /(1+\tan \mathrm{x})]=\underline{ }+\mathrm{c}\) (a) \(\log |\sec x+\tan x|\) (b) \(2 \sec ^{2}(\mathrm{x} / 2)\) (c) \(\log \mid \mathrm{x}+\sin \mathrm{x}\) (d) \((1 / 2)[x+\log |\sin x+\cos x|]\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(\int\left(x^{30}+x^{20}+x^{10}\right)\left(2 x^{20}+3 x^{10}+6\right)^{(1 / 10)} d x\) \(=\mathrm{k}\left(2 \mathrm{x}^{30}+3 \mathrm{x}^{20}+6 \mathrm{x}^{10}\right)^{(11 / 10)}+\mathrm{c}\) then \(\mathrm{k}=\) (c) \((1 / 66)\) (a) \((1 / 60)\) (b) \(-(1 / 60)\) (c) \(-(1 / 66)\)
If \(\int\left[\left(3^{x}-1\right) /\left(3^{x}+1\right)\right] d x=k \log \left|3^{(x / 2)}+3^{-(x / 2)}\right|+c\) then \(k=\) (a) \(\log _{3} \mathrm{e}\) (b) \(\log _{\mathrm{e}} 3\) (c) \(2 \log _{3} \mathrm{e}\) (d) \(2 \log _{\mathrm{e}} 3\)
If \(\int\left[\left(2 \mathrm{e}^{\mathrm{x}}+3 \mathrm{e}^{-\mathrm{x}}\right) /\left(3 \mathrm{e}^{\mathrm{x}}+4 \mathrm{e}^{-\mathrm{x}}\right)\right] \mathrm{d} \mathrm{x}=\mathrm{Ax}+\mathrm{B} \log \left|3 \mathrm{e}^{2 \mathrm{x}}+4\right|+\mathrm{c}\) then \(\mathrm{A}+\mathrm{B}=\) (a) \((11 / 24)\) (b) \((13 / 24)\) (c) \((15 / 24)\) (d) \((17 / 24)\)
\(\int\left[(x+2)^{2} /(x+4)\right] e^{x} d x=\ldots\) (a) \(\mathrm{e}^{\mathrm{x}}[\mathrm{x} /(\mathrm{x}+4)]\) (b) \(\mathrm{e}^{\mathrm{x}}[(\mathrm{x}+2) /(\mathrm{x}+4)]\) (c) \(\mathrm{e}^{\mathrm{x}}[(\mathrm{x}+2) /(\mathrm{x}+4)]\) (d) \(\left[\left(2 \mathrm{xe}^{2}\right) /(\mathrm{x}+4)\right]\)
\(\int\left[\mathrm{dx} /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]=\underline{\mathrm{c}}\) (a) \(-\log \mid\left[\left(\mathrm{e}^{\mathrm{x}}+1\right) /\left(\mathrm{e}^{\mathrm{x}}\right)\right]\) (b) \(-\log \mid\left[\left(\mathrm{e}^{\mathrm{x}}\right) /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\) (c) \(\log \left[\left[\left(\mathrm{e}^{\mathrm{x}}+1\right) /\left(2 \mathrm{e}^{\mathrm{x}}\right)\right]\right.\) (d) \(\log \mid\left[(\mathrm{e})^{2 \mathrm{x}} /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.