\(\int[\mathrm{dx} /(1+\tan \mathrm{x})]=\underline{ }+\mathrm{c}\) (a) \(\log |\sec x+\tan x|\) (b) \(2 \sec ^{2}(\mathrm{x} / 2)\) (c) \(\log \mid \mathrm{x}+\sin \mathrm{x}\) (d) \((1 / 2)[x+\log |\sin x+\cos x|]\)

Short Answer

Expert verified
None of the given options is correct.

Step by step solution

01

Set up the integral

Start by writing out the integral. In this case, the function to be integrated is \( \frac{dx}{1+\tan x} \).
02

Try a substitution

Set \( u = \tan x \), which implies \( du = \sec^2 x \, dx \). Substitute these values into the integral, giving \( \int \frac{1}{1 + u} \, du \).
03

Recognize a standard integral

This integral is a standard one – it is the integral of \( \frac{1}{1 + u} \), which is \( \ln |1+u| \).
04

Replace \(u\) with original value

Now that the integral has been solved, replace \( u \) with the original expression in terms of \( x \), i.e., \( \tan x \). So the antiderivative of \( \frac{1}{1 + \tan x} \) is \( \ln|1 + \tan x| \).
05

Return to Options

Compare this with the options provided. (a) \(\log |\sec x+\tan x|\) (b) \(2 \sec ^{2}(\mathrm{x} / 2)\) (c) \(\log \mid \mathrm{x}+\sin \mathrm{x}\) (d) \((1 / 2)[x+\log |\sin x+\cos x|]\) From these options, none of them matches the solution, \( \ln|1 + \tan x| \). This means that none of the options (a,b,c,d) is the correct answer to the given integral.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\int e^{x}\left[\left(x^{3}-x-2\right) /\left(x^{2}+1\right)^{2}\right] d x=\) (a) \(e^{x}\left[(2 x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(x+1) /\left(x^{2}+1\right)\right]\) (c) \(e^{x}\left[(x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(2 x-2) /\left(x^{2}+1\right)\right]\)

\(\int\left[\mathrm{d} \mathrm{x} /\left\\{\mathrm{x}\left(\mathrm{x}^{\mathrm{n}}+1\right)\right\\}\right]=\mathrm{c}\) (a) \((1 / n) \log \left[\left(x^{n}+1\right) / x^{n}\right] \mid\) (b) \((1 / n) \log \left|\left[x^{n} /\left(x^{n}+1\right)\right]\right|\) (c) \((1 / n) \log \left|x^{n}+1\right|\) (d) \((1 / n) \log \left|\left[\left(x^{n}-1\right) / x^{n}\right]\right|\)

\(\int\left[(\log x) / x^{2}\right] d x=\) (a) \([(-1) / x]\left(\log _{\mathrm{e}} \mathrm{x}+1\right)\) (b) \((1 / \mathrm{x})\left(\log _{\mathrm{e}} \mathrm{x}+1\right)\) (c) \(\log _{\mathrm{e}} \mathrm{x}+1\) (d) \(-\left(1+\log _{\mathrm{e}} \mathrm{x}\right)\)

\(\int\left[\mathrm{dx} /\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\right]=\underline{\mathrm{c}}\) (a) \(\log \left|\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right|\) (b) \(\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)\) (c) \(\log \left|\mathrm{e}^{\mathrm{x}}+1\right|\) (d) \(\tan ^{-1}\left(\mathrm{e}^{-\mathrm{x}}\right)\)

\(\int\left[\left(\mathrm{e}^{\mathrm{x}}-1\right) /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\left[\mathrm{d} \mathrm{x} / \sqrt{ \left.\left(\mathrm{e}^{\mathrm{x}}+1+\mathrm{e}^{-\mathrm{x}}\right)\right]}=\mathrm{c}\right.\) (a) \(\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\) (b) \(\sec ^{-1}\left(e^{x}+e^{-x}\right)\) (c) \(2 \tan ^{-1}\left(\mathrm{e}^{(\mathrm{x} / 2)}+\mathrm{e}^{-(\mathrm{x} / 2)}\right)\) (d) \(2 \sec ^{-1}\left(e^{(x / 2)}+e^{-(x / 2)}\right)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free