\(\int \mathrm{e}^{4 \log \mathrm{x}}\left(\mathrm{x}^{5}+1\right)^{-1}=\underline{\mathrm{c}}\) (a) \((1 / 5) \log \left(\mathrm{x}^{4}+1\right)\) (b) \(-\log \left(\mathrm{x}^{4}+1\right)\) (c) \(\log \left(x^{4}+1\right)\) (d) \((1 / 5) \log \left(x^{5}+1\right)\)

Short Answer

Expert verified
(d) \(\frac{1}{5}\log\left(x^5 + 1\right)\)

Step by step solution

01

Simplify the integrand

Apply the logarithm properties of \(\exp\) and \(\log\). Since \(\mathrm{e}^{4\log\mathrm{x}} = \mathrm{x}^4\), we can rewrite the given integral as: \[\int \mathrm{x}^4\left(\mathrm{x}^{5}+1\right)^{-1}\,\mathrm{d}x\]
02

Integrate using substitution

Let us perform a substitution: \[u = x^5 + 1\] \[ \frac{\mathrm{d}u}{\mathrm{d}x} = 5x^4\] \[\mathrm{d}u = 5x^4\mathrm{d}x\] Substituting into the integral: \[\int \frac{1}{5}\cdot\frac{\mathrm{d}u}{u}\]
03

Integrating

Now we can easily integrate the expression: \[\frac{1}{5} \int \frac{\mathrm{d}u}{u}\] The integral of \(1/u \mathrm{d}u\) is \(\log(|u|) + C\), so our final expression will be: \[\frac{1}{5}\log(|u|) + C\]
04

Reverse substitution

Substitute the original variable \(x\) back in: \[\frac{1}{5}\log(x^5 + 1) + C\] Comparing the options given, it matches with option (d): \(\boxed{\text{(d) }\frac{1}{5}\log\left(x^5 + 1\right)}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\int\left[\left(\sec ^{2} x-2009\right) /\left(\sin ^{2009} x\right)\right] d x=\) \(-c\) (a) \(\left[(\cot x) /\left(\sin ^{2009} x\right)\right]\) (b) \(\left[(-\cot x) /\left(\sin ^{2009} x\right)\right]\) (c) \(\left[(\tan x) /\left(\sin ^{2009} x\right)\right]\) (d) \(\left[(-\tan \mathrm{x}) /\left(\sin ^{2009} \mathrm{x}\right)\right]\)

\(\int\left[\mathrm{dx} /\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}+2\right)\right]=\) \(+c\) (a) \(-\left[1 /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\) (b) \(\left[1 /\left(e^{x}+1\right)\right]\) (c) \(-\left[2^{\mathrm{x}} /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\)

If \(\int \sin ^{-1}\left[2 x /\left(1+x^{2}\right)\right] d x=f(x)-\log \left(1+x^{2}\right)+c\) then \(f(x)=\) (a) \(\mathrm{xtan}^{-1} \mathrm{x}\) (b) \(-\mathrm{xtan}^{-1} \mathrm{x}\) (c) \(2 \mathrm{xtan}^{-1} \mathrm{x}\) (d) \(-2 \mathrm{xtan}^{-1} \mathrm{x}\)

\(\int e^{x}\left[\left(x^{3}-x-2\right) /\left(x^{2}+1\right)^{2}\right] d x=\) (a) \(e^{x}\left[(2 x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(x+1) /\left(x^{2}+1\right)\right]\) (c) \(e^{x}\left[(x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(2 x-2) /\left(x^{2}+1\right)\right]\)

If \(\int[(1+\cos 8 \mathrm{x}) /(\cot 2 \mathrm{x}-\tan 2 \mathrm{x})] \mathrm{dx}=\mathrm{Acos} 8 \mathrm{x}+\mathrm{C}\) then \(\mathrm{A}=\) (a) \(\overline{(1 / 16)}\) (b) \(-(1 / 8)\) (c) \(-(1 / 16)\) (d) \((1 / 8)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free