Chapter 11: Problem 898
If \(\int\left[\left(2^{\\{1 /(x) 2\\}}\right) \mathrm{d} x\right]=k 2^{\\{1 /(x) 2\\}}+c\) then \(k=\) (a) \(-[1 /(2 \log 2)]\) (b) \(-\log 2\) (c) \(-2\) (d) \(-(1 / 2)\)
Chapter 11: Problem 898
If \(\int\left[\left(2^{\\{1 /(x) 2\\}}\right) \mathrm{d} x\right]=k 2^{\\{1 /(x) 2\\}}+c\) then \(k=\) (a) \(-[1 /(2 \log 2)]\) (b) \(-\log 2\) (c) \(-2\) (d) \(-(1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\left[\left(\mathrm{e}^{\mathrm{x}}-1\right) /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\left[\mathrm{d} \mathrm{x} / \sqrt{ \left.\left(\mathrm{e}^{\mathrm{x}}+1+\mathrm{e}^{-\mathrm{x}}\right)\right]}=\mathrm{c}\right.\) (a) \(\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\) (b) \(\sec ^{-1}\left(e^{x}+e^{-x}\right)\) (c) \(2 \tan ^{-1}\left(\mathrm{e}^{(\mathrm{x} / 2)}+\mathrm{e}^{-(\mathrm{x} / 2)}\right)\) (d) \(2 \sec ^{-1}\left(e^{(x / 2)}+e^{-(x / 2)}\right)\)
If \(\int_{x \operatorname{cosec}^{2} x d x}=P \cdot x \cot x+Q \log |\sin x|+C\) then \(P+Q=\) (a) 1 (b) 2 (c) 0 (d) \(-1\)
If \(\int\left[\left(5^{x} d x\right) / \sqrt{\left(25^{x}-1\right)}\right]=k \log \mid 5^{x}+\sqrt{\left(25^{x}-1\right) \mid+c \text { then }}\) \(\mathrm{k}=\) (a) \(\log _{\mathrm{e}}^{(1 / 5)}\) (b) \(\left[1 /\left(\log _{\mathrm{e}} 5\right)\right]\) (c) \(\log _{\mathrm{e}} 25\) (d) \(\log _{\mathrm{e}}^{(1 / 25)}\)
\(\int(x-1) e^{-x} d x=\square+c\)
\(\int[\mathrm{dx} / \sqrt{(x-4)(x-7)}]=+c \quad(4
What do you think about this solution?
We value your feedback to improve our textbook solutions.