Chapter 11: Problem 898
If \(\int\left[\left(2^{\\{1 /(x) 2\\}}\right) \mathrm{d} x\right]=k 2^{\\{1 /(x) 2\\}}+c\) then \(k=\) (a) \(-[1 /(2 \log 2)]\) (b) \(-\log 2\) (c) \(-2\) (d) \(-(1 / 2)\)
Chapter 11: Problem 898
If \(\int\left[\left(2^{\\{1 /(x) 2\\}}\right) \mathrm{d} x\right]=k 2^{\\{1 /(x) 2\\}}+c\) then \(k=\) (a) \(-[1 /(2 \log 2)]\) (b) \(-\log 2\) (c) \(-2\) (d) \(-(1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\left[\left(\sec ^{2} x-2009\right) /\left(\sin ^{2009} x\right)\right] d x=\) \(-c\) (a) \(\left[(\cot x) /\left(\sin ^{2009} x\right)\right]\) (b) \(\left[(-\cot x) /\left(\sin ^{2009} x\right)\right]\) (c) \(\left[(\tan x) /\left(\sin ^{2009} x\right)\right]\) (d) \(\left[(-\tan \mathrm{x}) /\left(\sin ^{2009} \mathrm{x}\right)\right]\)
If \(\int\left[\left(5^{x} d x\right) / \sqrt{\left(25^{x}-1\right)}\right]=k \log \mid 5^{x}+\sqrt{\left(25^{x}-1\right) \mid+c \text { then }}\) \(\mathrm{k}=\) (a) \(\log _{\mathrm{e}}^{(1 / 5)}\) (b) \(\left[1 /\left(\log _{\mathrm{e}} 5\right)\right]\) (c) \(\log _{\mathrm{e}} 25\) (d) \(\log _{\mathrm{e}}^{(1 / 25)}\)
\(\int \sin x \cdot \cos x \cdot \cos 2 x \cdot \cos 4 x \cdot \cos 8 x \cdot \cos 16 x d x=\ldots+c\) (a) \([(\sin 16 \mathrm{x}) /(1024)]\) (b) \(-[(\cos 32 \mathrm{x}) /(1024)]\) (c) \([(\cos 32 \mathrm{x}) /(1096)]\) (d) \(-[(\cos 32 \mathrm{x}) /(1096)]\)
\(\int \mathrm{e}^{2 \mathrm{x}+\log \mathrm{x}} \mathrm{dx}=\) (a) \((1 / 4)(2 \mathrm{x}-1) \mathrm{e}^{2 \mathrm{x}}\) (b) \((1 / 2)(2 \mathrm{x}-1) \mathrm{e}^{2 \mathrm{x}}\) (c) \((1 / 4)(2 \mathrm{x}+1) \mathrm{e}^{2 \mathrm{x}}\) (d) \((1 / 4)(2 \mathrm{x}+1) \mathrm{e}^{2 \mathrm{x}}\)
$$ \begin{aligned} &\int\left[(\mathrm{dx}) /\left\\{(\mathrm{x}-1)^{3 / 2}(\mathrm{x}-2)^{1 / 2}\right\\}\right]=\underline{\mathrm{c}}\\\ &\text { (a) } 2 \sqrt{[}(\mathrm{x}-1) /(\mathrm{x}-2)] \end{aligned} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.