Chapter 11: Problem 899
\(\int(x-1) e^{-x} d x=\square+c\)
Chapter 11: Problem 899
\(\int(x-1) e^{-x} d x=\square+c\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int \mathrm{e}^{2 \mathrm{x}+\log \mathrm{x}} \mathrm{dx}=\) (a) \((1 / 4)(2 \mathrm{x}-1) \mathrm{e}^{2 \mathrm{x}}\) (b) \((1 / 2)(2 \mathrm{x}-1) \mathrm{e}^{2 \mathrm{x}}\) (c) \((1 / 4)(2 \mathrm{x}+1) \mathrm{e}^{2 \mathrm{x}}\) (d) \((1 / 4)(2 \mathrm{x}+1) \mathrm{e}^{2 \mathrm{x}}\)
\(\int[(x-\sin x) /(1-\cos x)] d x=\) \(+c\) (a) \(x \tan (x / 2)\) (b) \(-x \cot (x / 2)\) (c) \(\cot (\mathrm{x} / 2)\) (d) \(-\cot (x / 2)\)
If \(\int\left[\left(x^{4}+1\right) /\left(x^{6}+1\right)\right] d x=\tan ^{-1} x+P \tan ^{-1} x^{3}+c\) then \(P=\) (a) 3 (b) \((1 / 3)\) (c) \(-(1 / 3)\) (d) \(-3\)
\(\int\left[\left(e^{5 \log x}-e^{3 \log x}\right) /\left(e^{4 \log x}-e^{2 \log x}\right)\right] d x=\) (a) e \(\cdot 2^{-2 \mathrm{x}}\) (b) \(\mathrm{e}^{3} \log _{\mathrm{e}} \mathrm{x}\) (c) \(\left(\mathrm{x}^{3} / 3\right)\) (d) \(\left(\mathrm{x}^{2} / 2\right)\)
\(\int\left[\left\\{\left(x^{5}-x\right)^{1 / 5} d x\right\\} / x^{6}\right]=\ldots+c\) (a) \((5 / 24)\left[1-\left(1 / \mathrm{x}^{4}\right)\right]^{(6 / 5)}\) (b) \((1 / 24)\left[1-\left(1 / \mathrm{x}^{4}\right)\right]^{(1 / 5)}\) (c) \((5 / 24)\left[1-\left(1 / \mathrm{x}^{4}\right)\right]^{(1 / 5)}\) (d) \((5 / 24)\left[1-\left(1 / \mathrm{x}^{4}\right)\right]^{6}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.