Chapter 11: Problem 899
\(\int(x-1) e^{-x} d x=\square+c\)
Chapter 11: Problem 899
\(\int(x-1) e^{-x} d x=\square+c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\int[\\{(-\sin x+\cos x) d x\\}\) \(/\left\\{(\sin x+\cos x) \sqrt{\left. \left.\left(\sin x \cos x+\sin ^{2} x \cos ^{2} x\right)\right\\}\right]}=\operatorname{cosec}^{-1}[f(x)]+c\right.\) then \(\mathrm{f}(\mathrm{x})=\) (a) \(\sin 2 \mathrm{x}+1\) (b) \(1-\sin 2 x\) (c) \(\sin 2 x-1\) (d) \(\cos 2 \mathrm{x}+1\)
If \(\int[(1+\cos 8 \mathrm{x}) /(\cot 2 \mathrm{x}-\tan 2 \mathrm{x})] \mathrm{dx}=\mathrm{Acos} 8 \mathrm{x}+\mathrm{C}\) then \(\mathrm{A}=\) (a) \(\overline{(1 / 16)}\) (b) \(-(1 / 8)\) (c) \(-(1 / 16)\) (d) \((1 / 8)\)
if \(\int\left[\left(4 \mathrm{e}^{\mathrm{x}}+6 \mathrm{e}^{-\mathrm{x}}\right) /\left(9 \mathrm{e}^{\mathrm{x}}-4 \mathrm{e}^{-\mathrm{x}}\right)\right] \mathrm{dx}=\mathrm{Ax}+\mathrm{B} \log \left(9 \mathrm{e}^{2 \mathrm{x}}-4\right)+\mathrm{c}\) then \(\mathrm{A}, \mathrm{B}=\) (a) \((3 / 2),[(-35) /(36)]\) (b) \(-(3 / 2),[(-35) /(36)]\) (c) \(-(3 / 2),(35 / 36)\) (d) \((3 / 2),(35 / 36)\)
\(\int e^{2 x}(1+\tan x)^{2} d x=\) \(+c\) (a) \(\tan \mathrm{e}^{\mathrm{x}}\) (b) \(\tan \mathrm{x} \mathrm{e}^{2 \mathrm{x}}\) (c) \(\tan (\mathrm{x} / 2) \mathrm{e}^{\mathrm{x}}\) (d) \(\tan (\mathrm{x} / 2) \mathrm{e}^{-\mathrm{x}}\)
\(\int[(\tan \mathrm{x}) /\\{\sqrt{(\cos \mathrm{x})\\}]}=\) \(+c\) (a) \([(+2) / \sqrt{(\cos x)}]\) (b) \(-[1 / \sqrt{(\cos x)]}\) (c) \([(-2) /\\{3 \sqrt{(\cos x})\\}]\) (d) \([(-3) /\\{2 \sqrt{(\cos x})\\}]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.