Chapter 11: Problem 900
\(\int[\sin (\log x)+\cos (\log x)] d x=\underline{ }+c\) (a) \(\sin (\log x)+\cos (\log x)\) (b) \(+x \sin (\log x)\) (c) \(-x \cos (\log x)\) (d) \(\sin (\log x)+\cos (\log x)\)
Chapter 11: Problem 900
\(\int[\sin (\log x)+\cos (\log x)] d x=\underline{ }+c\) (a) \(\sin (\log x)+\cos (\log x)\) (b) \(+x \sin (\log x)\) (c) \(-x \cos (\log x)\) (d) \(\sin (\log x)+\cos (\log x)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\int[(2012 \mathrm{x}+2013) /(2013 \mathrm{x}+2012)] \mathrm{dx}\) \(=[(2012) /(2013)] \mathrm{x}+\mathrm{klog}|2013 \mathrm{x}+2012|+\mathrm{c}\) then \(\mathrm{k}=\) (a) \([(4025) /(2013)]\) (b) \(\left[(4025) /(2013)^{2}\right]\) (c) \([(-4025) /(2013)]\) (d) \(\left[(-4025) /(2013)^{2}\right]\)
If \(\int\left(x^{30}+x^{20}+x^{10}\right)\left(2 x^{20}+3 x^{10}+6\right)^{(1 / 10)} d x\) \(=\mathrm{k}\left(2 \mathrm{x}^{30}+3 \mathrm{x}^{20}+6 \mathrm{x}^{10}\right)^{(11 / 10)}+\mathrm{c}\) then \(\mathrm{k}=\) (c) \((1 / 66)\) (a) \((1 / 60)\) (b) \(-(1 / 60)\) (c) \(-(1 / 66)\)
\(\int\left[\left\\{\left(x^{2}-1\right) d x\right\\} /\left\\{\left(x^{4}+3 x^{2}+1\right) \tan \left[\left(x^{2}+1\right) / x\right]\right\\}\right]=\ldots\) (a) \(\log \left|\tan ^{-1}\\{\mathrm{x}+(1 / \mathrm{x})\\}\right|\) (b) \(\log \left|\tan ^{-1}\\{\mathrm{x}-(1 / \mathrm{x})\\}\right|\) (c) \(\tan ^{-1}[\mathrm{x}+(1 / \mathrm{x})]\) (d) \(\tan ^{-1}[\mathrm{x}-(1 / \mathrm{x})]\)
\(\int\left[\mathrm{dx} /\left(\mathrm{x}^{4}+\mathrm{x}^{3}\right)\right]=\left(\mathrm{A} / \mathrm{x}^{2}\right)+(\mathrm{B} / \mathrm{x})+\log |\mathrm{x} /(\mathrm{x}+1)|+\mathrm{c}\) (a) \(\mathrm{A}=(1 / 2), \mathrm{B}=1\) (b) \(\mathrm{A}=1, \mathrm{~B}=(1 / 2)\) (c) \(\mathrm{A}=-(1 / 2), \mathrm{B}=1\) (d) \(\mathrm{A}=-1, \mathrm{~B}=-(1 / 2)\)
If \(\int \sin ^{3} x d x=A \cos ^{3} x+B \cos x+c\) then \(A-B=\) (a) \((4 / 3)\) (b) \(-(4 / 3)\) (c) \((1 / 3)\) (d) \(\overline{-(1 / 3)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.