\(\left.\int[\mathrm{dx} /\\{(\mathrm{x}+3) \sqrt{(\mathrm{x}}+2)\\}\right]=\) \(-c\) (a) \(2 \tan ^{-1} \sqrt{(x+2)}\) (b) \(2 \tan ^{-1} \sqrt{\left(x^{2}+3\right)}\) (c) \(2 \tan ^{-1} x\) (d) \(2 \tan ^{-1} \sqrt{\left(x^{2}+2\right)}\)

Short Answer

Expert verified
The short answer is: \(\int \frac{1}{(x+3)\sqrt{x+2}} \, dx = 2 \arctan[\frac{1}{2}\sqrt{x+2}] + C\). The correct option is (a).

Step by step solution

01

Analyze the integral function

We are given the integral \[ \int \frac{1}{(x+3) \sqrt{x+2}} \, dx \] To solve this integral, we will use substitution.
02

Substitution

We see a square root in the denominator. Let's make a trigonometric substitution to simplify the denominator. Here, use the identity \(\tan{(\theta)} = \sqrt{x+2}\), so that we can rewrite the square root as a trigonometric function. First, we must find the differential \(dx\). Differentiate the above equation as follows: \[ \frac{d}{dx} (\tan{\theta}) = \frac{d}{dx} \sqrt{x+2} \]
03

Find the differential

Recall that: \(\frac{d}{dx} (\tan{\theta}) = (\sec\theta)^2\) Now, we have \[ (\sec\theta)^2 \, d\theta = \frac{d}{dx} \sqrt{x+2} \, dx \] By differentiating the right side of the equation, we get: \(d\theta =\frac{dx}{(2 \sqrt{x+2})}\)
04

Replace \(x\) and \(dx\) in the integral

Now, substitute back the values of \(dx\) and \(\sqrt{x+2}\) in the integral: \[ \int \frac{1}{(x+3)\sqrt{x+2}} \, dx = \int \frac{2d\theta}{\tan{(\theta)} (\tan{(\theta)} + 3)} \] Remember\(\tan{(\theta)} = \sqrt{x+2}\):
05

Simplify and integrate

Now, we have a simplified integral to solve: \[ 2 \int \frac{d\theta}{\tan{(\theta)}(\tan{(\theta)} + 3)} \] The function simplifies to the well-known primitive of \(\arctan(\tan(\theta))\) as follows: \[ \int \frac{d\theta}{\tan{(\theta)} + 3} = \frac{1}{2} \int \frac{d\theta}{\frac{1}{2}\tan{(\theta)} + \frac{3}{2}} \] Now, use standard integrals tables to solve the integral: \[ \int \frac{d\theta}{\frac{1}{2}\tan{(\theta)} + \frac{3}{2}} = 2 \arctan[\frac{1}{2}(\tan{(\theta)})] + C \]
06

Go back to the variable \(x\)

Substitute \(\tan(\theta) = \sqrt{x+2}\) and add the constant of integration: \[ 2 \arctan[\frac{1}{2}(\tan{(\theta)})] + C = 2 \arctan[\frac{1}{2}\sqrt{x+2}] + C \] Thus, the integral is \[ \int \frac{1}{(x+3)\sqrt{x+2}} \, dx = 2 \arctan[\frac{1}{2}\sqrt{x+2}] + C \] Comparing our result with the given options, we can see that the answer is (a) \(2 \tan ^{-1}(\frac{1}{2}\sqrt{x+2})\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\int\left[\mathrm{d} \mathrm{x} /\left\\{\mathrm{x}\left(\mathrm{x}^{\mathrm{n}}+1\right)\right\\}\right]=\mathrm{c}\) (a) \((1 / n) \log \left[\left(x^{n}+1\right) / x^{n}\right] \mid\) (b) \((1 / n) \log \left|\left[x^{n} /\left(x^{n}+1\right)\right]\right|\) (c) \((1 / n) \log \left|x^{n}+1\right|\) (d) \((1 / n) \log \left|\left[\left(x^{n}-1\right) / x^{n}\right]\right|\)

\(\int\left[\left(\mathrm{e}^{\mathrm{x}} \mathrm{d} \mathrm{x}\right) /\left\\{\left(\mathrm{e}^{\mathrm{x}}+2012\right)\left(\mathrm{e}^{\mathrm{x}}+2013\right)\right\\}\right]=\ldots\) (a) \(\log \left[\left(\mathrm{e}^{\mathrm{x}}+2012\right) /\left(\mathrm{e}^{\mathrm{x}}+2013\right)\right]\) (b) \(\log \left[\left(e^{x}+2013\right) /\left(e^{x}+2012\right)\right]\) (c) \(\left[\left(e^{x}+2012\right) /\left(e^{x}+2013\right)\right]\) (d) \(\left[\left(e^{x}+2013\right) /\left(e^{x}+2012\right)\right]\)

\(\int \operatorname{cosec}[\mathrm{x}-(\pi / 6)] \operatorname{cosec}[\mathrm{x}-(\pi / 3)] \mathrm{d} \mathrm{x}\) \(=\mathrm{k}[\log |\sin \\{\mathrm{x}-(\pi / 6)\\}|-\log |\sin \\{\mathrm{x}-(\pi / 3)\\}|]+\mathrm{c}\) then \(\mathrm{k}=\) (a) 2 (b) \(-2\) (c) \((\sqrt{3} / 2)\) (d) \((2 \overline{\sqrt{3})}\)

\(\int\left[(1+\mathrm{x}) /\left(1+{ }^{3} \sqrt{\mathrm{x}}\right)\right] \mathrm{d} \mathrm{x}=\underline{\mathrm{x}}=\mathrm{c}\) (a) \((3 / 5) \mathrm{x}^{5 / 3}-(3 / 4) \mathrm{x}^{4 / 3}-\mathrm{x}\) (b) \((3 / 5) x^{5 / 3}-(3 / 4) x^{4 / 3}+x\) (c) \((3 / 5) \mathrm{x}^{5 / 3}+(3 / 4) \mathrm{x}^{4 / 3}-\mathrm{x}\) (b) \((3 / 5) \mathrm{x}^{5 / 3}+(3 / 4) \mathrm{x}^{4 / 3}-\mathrm{x}\)

\(\int \mathrm{e}^{\mathrm{x}}\left[(1-\mathrm{x}) /\left(1+\mathrm{x}^{2}\right)\right]^{2} \mathrm{dx}=\underline{\mathrm{c}}\) (a) \(e^{x}\left(1+x^{2}\right)\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(1+\mathrm{x}^{2}\right)\right]\) (c) \(\mathrm{e}^{\mathrm{x}}\left[(1-\mathrm{x}) /\left(1+\mathrm{x}^{2}\right)\right]\) (d) \(e^{x}\left(1-x^{2}\right)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free