Chapter 11: Problem 914
\(\int\left[(\log x-1) /(\log x)^{2}\right] d x=\ldots\) (a) \(x \log x\) (b) \(-x \log x\) (c) \([x /(\log x)]\) (d) \([(-\mathrm{x}) /(\log \mathrm{x})]\)
Chapter 11: Problem 914
\(\int\left[(\log x-1) /(\log x)^{2}\right] d x=\ldots\) (a) \(x \log x\) (b) \(-x \log x\) (c) \([x /(\log x)]\) (d) \([(-\mathrm{x}) /(\log \mathrm{x})]\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int[\mathrm{dx} /(1+\tan \mathrm{x})]=\underline{ }+\mathrm{c}\) (a) \(\log |\sec x+\tan x|\) (b) \(2 \sec ^{2}(\mathrm{x} / 2)\) (c) \(\log \mid \mathrm{x}+\sin \mathrm{x}\) (d) \((1 / 2)[x+\log |\sin x+\cos x|]\)
If \(\int_{x}^{6} \log x d x=P x^{2} \log x+Q x^{7}+c\) then \(P+Q=\) (a) \((6 / 49)\) (b) \(-(1 / 49)\) (c) (1/49) (d) \(-(6 / 49)\)
If \(\int[\mathrm{dx} /(5+4 \cos \mathrm{x})]=\operatorname{Ptan}^{-1}[\\{\tan (\mathrm{x} / 2)\\} / 3]+\mathrm{c}\) then \(\mathrm{P}\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \((1 / 3)\) (d) \((2 / 3)\)
If \(\int\left[\sqrt{\mathrm{x}} / \sqrt{\left. \left.\left(1-\mathrm{x}^{3 / 2}\right)\right] \mathrm{d} \mathrm{x}=\mathrm{P} \sqrt{\left(1-\mathrm{x}^{3 / 2}\right.}\right)+\mathrm{c} \text { then } \mathrm{P}=}\right.\) (a) \((4 / 3)\) (b) \((3 / 4)\) (c) \([(-4) / 3]\) (d) \([(-3) / 4]\)
\(\int\left[\left(2 x^{12}+5 x^{9}\right) /\left(x^{5}+x^{3}+1\right)^{3}\right] d x=\) \(+c\) (a) \(\left[\left(x^{10}+x^{5}\right) /\left(x^{5}+x^{3}+1\right)\right]^{2}\) (b) \(\left[\left(x^{5}+x^{10}\right) /\left(x^{5}+x^{3}+1\right)\right]^{2}\) (c) \(\left[\left(x^{10}\right) /\left\\{2\left(x^{5}+x^{3}+1\right)^{2}\right\\}\right]\) (d) \(\left[\left(x^{5}\right) /\left\\{2\left(x^{5}+x^{3}+1\right)^{2}\right]\right.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.