Chapter 11: Problem 914
\(\int\left[(\log x-1) /(\log x)^{2}\right] d x=\ldots\) (a) \(x \log x\) (b) \(-x \log x\) (c) \([x /(\log x)]\) (d) \([(-\mathrm{x}) /(\log \mathrm{x})]\)
Chapter 11: Problem 914
\(\int\left[(\log x-1) /(\log x)^{2}\right] d x=\ldots\) (a) \(x \log x\) (b) \(-x \log x\) (c) \([x /(\log x)]\) (d) \([(-\mathrm{x}) /(\log \mathrm{x})]\)
All the tools & learning materials you need for study success - in one app.
Get started for free
\(\int\left[\left(\sec ^{2} x-2009\right) /\left(\sin ^{2009} x\right)\right] d x=\) \(-c\) (a) \(\left[(\cot x) /\left(\sin ^{2009} x\right)\right]\) (b) \(\left[(-\cot x) /\left(\sin ^{2009} x\right)\right]\) (c) \(\left[(\tan x) /\left(\sin ^{2009} x\right)\right]\) (d) \(\left[(-\tan \mathrm{x}) /\left(\sin ^{2009} \mathrm{x}\right)\right]\)
\(\int\left[\left(2^{\sqrt{x}}\right) /(\sqrt{x})\right] d x=\) (a) \(2^{\sqrt{x}} \log _{2} \mathrm{e}\) (b) \(2^{\sqrt{x}} \log _{e} 2\) (c) \(2^{(\sqrt{x}+1)} \log _{2} e\) (d) \(2^{\sqrt{(x+1)}} \log _{\mathrm{e}} 2\)
If \(\int_{x \operatorname{cosec}^{2} x d x}=P \cdot x \cot x+Q \log |\sin x|+C\) then \(P+Q=\) (a) 1 (b) 2 (c) 0 (d) \(-1\)
\(\int\left[(1+\mathrm{x}) /\left(1+{ }^{3} \sqrt{\mathrm{x}}\right)\right] \mathrm{d} \mathrm{x}=\underline{\mathrm{x}}=\mathrm{c}\) (a) \((3 / 5) \mathrm{x}^{5 / 3}-(3 / 4) \mathrm{x}^{4 / 3}-\mathrm{x}\) (b) \((3 / 5) x^{5 / 3}-(3 / 4) x^{4 / 3}+x\) (c) \((3 / 5) \mathrm{x}^{5 / 3}+(3 / 4) \mathrm{x}^{4 / 3}-\mathrm{x}\) (b) \((3 / 5) \mathrm{x}^{5 / 3}+(3 / 4) \mathrm{x}^{4 / 3}-\mathrm{x}\)
If \(\int[(2 \sin x+\cos x) /(7 \sin x-5 \cos x)] d x\) \(=a x+b \log |7 \sin x-5 \cos x|+c\) then \(a-b=\) (a) \((4 / 37)\) (b) \(-(4 / 37)\) (c) \((8 / 37)\) (d) \(-(8 / 37)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.