Chapter 11: Problem 916
If \(\int_{x \operatorname{cosec}^{2} x d x}=P \cdot x \cot x+Q \log |\sin x|+C\) then \(P+Q=\) (a) 1 (b) 2 (c) 0 (d) \(-1\)
Chapter 11: Problem 916
If \(\int_{x \operatorname{cosec}^{2} x d x}=P \cdot x \cot x+Q \log |\sin x|+C\) then \(P+Q=\) (a) 1 (b) 2 (c) 0 (d) \(-1\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int \mathrm{e}^{\mathrm{x}}\left[(1-\mathrm{x}) /\left(1+\mathrm{x}^{2}\right)\right]^{2} \mathrm{dx}=\underline{\mathrm{c}}\) (a) \(e^{x}\left(1+x^{2}\right)\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(1+\mathrm{x}^{2}\right)\right]\) (c) \(\mathrm{e}^{\mathrm{x}}\left[(1-\mathrm{x}) /\left(1+\mathrm{x}^{2}\right)\right]\) (d) \(e^{x}\left(1-x^{2}\right)\)
if \(\int\left[\left(4 \mathrm{e}^{\mathrm{x}}+6 \mathrm{e}^{-\mathrm{x}}\right) /\left(9 \mathrm{e}^{\mathrm{x}}-4 \mathrm{e}^{-\mathrm{x}}\right)\right] \mathrm{dx}=\mathrm{Ax}+\mathrm{B} \log \left(9 \mathrm{e}^{2 \mathrm{x}}-4\right)+\mathrm{c}\) then \(\mathrm{A}, \mathrm{B}=\) (a) \((3 / 2),[(-35) /(36)]\) (b) \(-(3 / 2),[(-35) /(36)]\) (c) \(-(3 / 2),(35 / 36)\) (d) \((3 / 2),(35 / 36)\)
\(\int \operatorname{cosec}^{3} x d x=\ldots+c\) (a) \(-(1 / 2) \operatorname{cosec} x \cot x+(1 / 2) \log |(\operatorname{cosec} x-\cot x)|\) (b) \(-(1 / 2) \operatorname{cosec} x \cot x\) (c) \((1 / 2) \operatorname{cosec} x \cot x+(1 / 2) \log |(\operatorname{cosec} x-\cot x)|\) (d) \((1 / 2) \operatorname{cosec} x \cot x-(1 / 2) \log \mid(\operatorname{cosec} x-\cot x)\)
\(\int\left[\left(\cos ^{8} x-\sin ^{8} x\right) /\left(1-2 \sin ^{2} x \cos ^{2} x\right)\right] d x=\underline{ }+c\) (a) \(-[(\cos 2 \mathrm{x}) / 2]\) (b) \(\overline{-[(\sin 2} x) / 2]\) (c) \([(\cos 2 \mathrm{x}) / 2]\) (d) \([(\sin 2 \mathrm{x}) / 2]\)
If \(\int[(2 \sin x+\cos x) /(7 \sin x-5 \cos x)] d x\) \(=a x+b \log |7 \sin x-5 \cos x|+c\) then \(a-b=\) (a) \((4 / 37)\) (b) \(-(4 / 37)\) (c) \((8 / 37)\) (d) \(-(8 / 37)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.