Chapter 11: Problem 916
If \(\int_{x \operatorname{cosec}^{2} x d x}=P \cdot x \cot x+Q \log |\sin x|+C\) then \(P+Q=\) (a) 1 (b) 2 (c) 0 (d) \(-1\)
Chapter 11: Problem 916
If \(\int_{x \operatorname{cosec}^{2} x d x}=P \cdot x \cot x+Q \log |\sin x|+C\) then \(P+Q=\) (a) 1 (b) 2 (c) 0 (d) \(-1\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int[\mathrm{dx} / \sqrt{(x-4)(x-7)}]=+c \quad(4
\(\int \sqrt{(1+\operatorname{cosec} x d x)}=\ldots\) (a) \(2 \sin ^{-1}(\sqrt{\cos } \mathrm{x})\) (b) \(2 \cos ^{-1}(\sqrt{\sin } \mathrm{x})\) (c) \(\sin ^{-1}(2 \sin x-1)\) (d) \(2 \cos ^{-1}(\sqrt{\cos x})\)
\(\int e^{x}\left[\left(x^{3}-x-2\right) /\left(x^{2}+1\right)^{2}\right] d x=\) (a) \(e^{x}\left[(2 x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(x+1) /\left(x^{2}+1\right)\right]\) (c) \(e^{x}\left[(x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(2 x-2) /\left(x^{2}+1\right)\right]\)
If \(\int\left[\mathrm{dx} /\left(\sin ^{6} \mathrm{x}+\cos ^{6} \mathrm{x}\right)\right]=\mathrm{K} \tan ^{-1}[(\tan 2 \mathrm{x}) / 2]+\mathrm{c}\) then \(\mathrm{K}=\) (a) \((\overline{1 / 2)}\) (b) \(-1\) (c) 1 (d) \(-(1 / 2)\)
If \(\int \sin ^{3} x d x=A \cos ^{3} x+B \cos x+c\) then \(A-B=\) (a) \((4 / 3)\) (b) \(-(4 / 3)\) (c) \((1 / 3)\) (d) \(\overline{-(1 / 3)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.