Chapter 11: Problem 918
\(\int[\log (\log x)+\\{1 /(\log x)\\}] d x=\) \(+c\) (a) \([\mathrm{x} /\\{\log (\log \mathrm{x})\\}]\) (b) \(\mathrm{x}+\log (\log \mathrm{x})\) (c) \(\log (\log \mathrm{x})+(1 / \mathrm{x})\) (d) \(x \log (\log x)\)
Chapter 11: Problem 918
\(\int[\log (\log x)+\\{1 /(\log x)\\}] d x=\) \(+c\) (a) \([\mathrm{x} /\\{\log (\log \mathrm{x})\\}]\) (b) \(\mathrm{x}+\log (\log \mathrm{x})\) (c) \(\log (\log \mathrm{x})+(1 / \mathrm{x})\) (d) \(x \log (\log x)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\left[\mathrm{dx} / \sqrt{\left(1+\operatorname{cosec}^{2} \mathrm{x}\right)}\right]=\underline{\mathrm{c}}\) (a) \(\sin ^{-1}[(\sin x) /(\sqrt{2})]\) (b) \(\sin ^{-1}[(\cos x) /(\sqrt{2})]\) (c) \(\cos ^{-1}[(\cos x) / \sqrt{2}]\) (d) \(\cos ^{-1}[(\sin x) / \sqrt{2}]\)
If \(\int\left[\left\\{x^{2012} \tan ^{-1}\left(x^{2012}\right)\right\\} /\left(1+x^{4024}\right)\right] d x=k \tan ^{-1}\left(x^{2012}\right)+c\) (a) \([1 /(2012)]\) (a) \(-[1 /(2012)]\) (c) \([1 /(4024)]\) (d) \(-[1 /(4024)]\)
\(\int e^{x}\left[\left(x^{3}-x-2\right) /\left(x^{2}+1\right)^{2}\right] d x=\) (a) \(e^{x}\left[(2 x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(x+1) /\left(x^{2}+1\right)\right]\) (c) \(e^{x}\left[(x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(2 x-2) /\left(x^{2}+1\right)\right]\)
\(I=\int\left[\left(x^{3} d x\right) /\left\\{\sqrt{\left. \left.\left(1+x^{8}\right)\right\\}\right]}\right.\right.\) (a) \(\log \mid x^{4}+\sqrt{\left(1+x^{8}\right) \mid+c}\) (b) \(\log \mid \sqrt{\left(x^{8}+1\right) \mid+c}\) (c) \((1 / 4) \log \mid \mathrm{x}^{4}+\sqrt{\left(1+\mathrm{x}^{8}\right) \mid+\mathrm{c}}\) (d) none of these
\(\int \mathrm{e}^{2 \mathrm{x}+\log \mathrm{x}} \mathrm{dx}=\) (a) \((1 / 4)(2 \mathrm{x}-1) \mathrm{e}^{2 \mathrm{x}}\) (b) \((1 / 2)(2 \mathrm{x}-1) \mathrm{e}^{2 \mathrm{x}}\) (c) \((1 / 4)(2 \mathrm{x}+1) \mathrm{e}^{2 \mathrm{x}}\) (d) \((1 / 4)(2 \mathrm{x}+1) \mathrm{e}^{2 \mathrm{x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.