Chapter 11: Problem 918
\(\int[\log (\log x)+\\{1 /(\log x)\\}] d x=\) \(+c\) (a) \([\mathrm{x} /\\{\log (\log \mathrm{x})\\}]\) (b) \(\mathrm{x}+\log (\log \mathrm{x})\) (c) \(\log (\log \mathrm{x})+(1 / \mathrm{x})\) (d) \(x \log (\log x)\)
Chapter 11: Problem 918
\(\int[\log (\log x)+\\{1 /(\log x)\\}] d x=\) \(+c\) (a) \([\mathrm{x} /\\{\log (\log \mathrm{x})\\}]\) (b) \(\mathrm{x}+\log (\log \mathrm{x})\) (c) \(\log (\log \mathrm{x})+(1 / \mathrm{x})\) (d) \(x \log (\log x)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\left[(\mathrm{d} \mathrm{x}) /(2 \sin \mathrm{x}+3 \cos \mathrm{x})^{2}\right]=\underline{\mathrm{c}}\) (a) \(-[1 /(2 \tan x+3)]\) (b) \([\overline{1 /(2 \tan x+3})]\) (c) \(-[1 /\\{2(2 \tan \mathrm{x}+3)\\}]\) (d) \([1 /\\{2(2 \tan \mathrm{x}+3)\\}]\)
If \(\int\left[\left\\{x^{2012} \tan ^{-1}\left(x^{2012}\right)\right\\} /\left(1+x^{4024}\right)\right] d x=k \tan ^{-1}\left(x^{2012}\right)+c\) (a) \([1 /(2012)]\) (a) \(-[1 /(2012)]\) (c) \([1 /(4024)]\) (d) \(-[1 /(4024)]\)
If \(\int[\\{(-\sin x+\cos x) d x\\}\) \(/\left\\{(\sin x+\cos x) \sqrt{\left. \left.\left(\sin x \cos x+\sin ^{2} x \cos ^{2} x\right)\right\\}\right]}=\operatorname{cosec}^{-1}[f(x)]+c\right.\) then \(\mathrm{f}(\mathrm{x})=\) (a) \(\sin 2 \mathrm{x}+1\) (b) \(1-\sin 2 x\) (c) \(\sin 2 x-1\) (d) \(\cos 2 \mathrm{x}+1\)
\(\int\left[\left(2 x^{12}+5 x^{9}\right) /\left(x^{5}+x^{3}+1\right)^{3}\right] d x=\) \(+c\) (a) \(\left[\left(x^{10}+x^{5}\right) /\left(x^{5}+x^{3}+1\right)\right]^{2}\) (b) \(\left[\left(x^{5}+x^{10}\right) /\left(x^{5}+x^{3}+1\right)\right]^{2}\) (c) \(\left[\left(x^{10}\right) /\left\\{2\left(x^{5}+x^{3}+1\right)^{2}\right\\}\right]\) (d) \(\left[\left(x^{5}\right) /\left\\{2\left(x^{5}+x^{3}+1\right)^{2}\right]\right.\)
\(\int\left[(\log x) / x^{2}\right] d x=\) (a) \([(-1) / x]\left(\log _{\mathrm{e}} \mathrm{x}+1\right)\) (b) \((1 / \mathrm{x})\left(\log _{\mathrm{e}} \mathrm{x}+1\right)\) (c) \(\log _{\mathrm{e}} \mathrm{x}+1\) (d) \(-\left(1+\log _{\mathrm{e}} \mathrm{x}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.