Chapter 11: Problem 923
If \(\int \sin ^{3} x d x=A \cos ^{3} x+B \cos x+c\) then \(A-B=\) (a) \((4 / 3)\) (b) \(-(4 / 3)\) (c) \((1 / 3)\) (d) \(\overline{-(1 / 3)}\)
Chapter 11: Problem 923
If \(\int \sin ^{3} x d x=A \cos ^{3} x+B \cos x+c\) then \(A-B=\) (a) \((4 / 3)\) (b) \(-(4 / 3)\) (c) \((1 / 3)\) (d) \(\overline{-(1 / 3)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\int\left[\sqrt{\mathrm{x}} / \sqrt{\left. \left.\left(1-\mathrm{x}^{3 / 2}\right)\right] \mathrm{d} \mathrm{x}=\mathrm{P} \sqrt{\left(1-\mathrm{x}^{3 / 2}\right.}\right)+\mathrm{c} \text { then } \mathrm{P}=}\right.\) (a) \((4 / 3)\) (b) \((3 / 4)\) (c) \([(-4) / 3]\) (d) \([(-3) / 4]\)
If \(\mathrm{f}(\mathrm{x})=\cos \mathrm{x}-\cos ^{2} \mathrm{x}+\cos ^{3} \mathrm{x}-\cos ^{4} \mathrm{x}+\underline{\mathrm{x}}+\) then \(\int f(x) d x=\) \(+c\) (a) \(\tan (\mathrm{x} / 2)\) (b) \(x+\tan (x / 2)\) (b) \(x-(1 / 2) \tan (x / 2)\) (d) \(x-\tan (x / 2)\)
\(\int(x+4)(x+3)^{7} d x=\) (a) \(\left[(x+3)^{9} / 9\right]-\left[(x+3)^{8} / 8\right]\) (b) \(\left[\left\\{(x+3)^{8}(8 x+33)\right\\} / 72\right]\) (c) \(\left[\left\\{(x+3)^{8}(8 x+33)\right\\} / 72\right]\) (d) \(\left[(x+3)^{8} / 8\right]\)
\(\int\left[\mathrm{d} \mathrm{x} /\left\\{\mathrm{x}\left(\mathrm{x}^{\mathrm{n}}+1\right)\right\\}\right]=\mathrm{c}\) (a) \((1 / n) \log \left[\left(x^{n}+1\right) / x^{n}\right] \mid\) (b) \((1 / n) \log \left|\left[x^{n} /\left(x^{n}+1\right)\right]\right|\) (c) \((1 / n) \log \left|x^{n}+1\right|\) (d) \((1 / n) \log \left|\left[\left(x^{n}-1\right) / x^{n}\right]\right|\)
\(\int\left[\left\\{\left(x^{2}-1\right) d x\right\\} /\left\\{\left(x^{4}+3 x^{2}+1\right) \tan \left[\left(x^{2}+1\right) / x\right]\right\\}\right]=\ldots\) (a) \(\log \left|\tan ^{-1}\\{\mathrm{x}+(1 / \mathrm{x})\\}\right|\) (b) \(\log \left|\tan ^{-1}\\{\mathrm{x}-(1 / \mathrm{x})\\}\right|\) (c) \(\tan ^{-1}[\mathrm{x}+(1 / \mathrm{x})]\) (d) \(\tan ^{-1}[\mathrm{x}-(1 / \mathrm{x})]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.