Chapter 11: Problem 923
If \(\int \sin ^{3} x d x=A \cos ^{3} x+B \cos x+c\) then \(A-B=\) (a) \((4 / 3)\) (b) \(-(4 / 3)\) (c) \((1 / 3)\) (d) \(\overline{-(1 / 3)}\)
Chapter 11: Problem 923
If \(\int \sin ^{3} x d x=A \cos ^{3} x+B \cos x+c\) then \(A-B=\) (a) \((4 / 3)\) (b) \(-(4 / 3)\) (c) \((1 / 3)\) (d) \(\overline{-(1 / 3)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\int\left(x^{30}+x^{20}+x^{10}\right)\left(2 x^{20}+3 x^{10}+6\right)^{(1 / 10)} d x\) \(=\mathrm{k}\left(2 \mathrm{x}^{30}+3 \mathrm{x}^{20}+6 \mathrm{x}^{10}\right)^{(11 / 10)}+\mathrm{c}\) then \(\mathrm{k}=\) (c) \((1 / 66)\) (a) \((1 / 60)\) (b) \(-(1 / 60)\) (c) \(-(1 / 66)\)
\(\int\left[\left(x^{2} d x\right) /\left\\{\left(x^{2}+2\right)\left(x^{2}+3\right)\right\\}\right]=\ldots\) (a) \(\sqrt{3} \tan ^{-1}(\mathrm{x} / \sqrt{3})+\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\) (b) \(\sqrt{3} \tan ^{-1}(\mathrm{x} / \sqrt{3})-\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\) (c) \(\tan ^{-1}(\mathrm{x} / \sqrt{3})+\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\) (d) \(\tan ^{-1}(\mathrm{x} / \sqrt{3})-\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\)
If \(\int[(\cos 9 x+\cos 6 x) /(2 \cos 5 x-1)] d x=k_{1} \sin 4 x+k_{2} \sin x+c\) then \(4 \mathrm{k}_{1}+\mathrm{k}_{2}=\) (a) 1 (b) 2 (c) 4 (d) 5
\(\int\left[\left(2^{\sqrt{x}}\right) /(\sqrt{x})\right] d x=\) (a) \(2^{\sqrt{x}} \log _{2} \mathrm{e}\) (b) \(2^{\sqrt{x}} \log _{e} 2\) (c) \(2^{(\sqrt{x}+1)} \log _{2} e\) (d) \(2^{\sqrt{(x+1)}} \log _{\mathrm{e}} 2\)
\(\int\left[\left(\mathrm{e}^{\mathrm{x}} \mathrm{d} \mathrm{x}\right) /\left\\{\left(\mathrm{e}^{\mathrm{x}}+2012\right)\left(\mathrm{e}^{\mathrm{x}}+2013\right)\right\\}\right]=\ldots\) (a) \(\log \left[\left(\mathrm{e}^{\mathrm{x}}+2012\right) /\left(\mathrm{e}^{\mathrm{x}}+2013\right)\right]\) (b) \(\log \left[\left(e^{x}+2013\right) /\left(e^{x}+2012\right)\right]\) (c) \(\left[\left(e^{x}+2012\right) /\left(e^{x}+2013\right)\right]\) (d) \(\left[\left(e^{x}+2013\right) /\left(e^{x}+2012\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.