Chapter 11: Problem 928
If \(\int[\mathrm{dx} /(5+4 \cos \mathrm{x})]=\operatorname{Ptan}^{-1}[\\{\tan (\mathrm{x} / 2)\\} / 3]+\mathrm{c}\) then \(\mathrm{P}\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \((1 / 3)\) (d) \((2 / 3)\)
Chapter 11: Problem 928
If \(\int[\mathrm{dx} /(5+4 \cos \mathrm{x})]=\operatorname{Ptan}^{-1}[\\{\tan (\mathrm{x} / 2)\\} / 3]+\mathrm{c}\) then \(\mathrm{P}\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \((1 / 3)\) (d) \((2 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\left[\mathrm{dx} /\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\right]=\underline{\mathrm{c}}\) (a) \(\log \left|\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right|\) (b) \(\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)\) (c) \(\log \left|\mathrm{e}^{\mathrm{x}}+1\right|\) (d) \(\tan ^{-1}\left(\mathrm{e}^{-\mathrm{x}}\right)\)
\(\int\left[(\log \mathrm{x}) /(1+\log \mathrm{x})^{2}\right] \mathrm{d} \mathrm{x}=\underline{ }+\mathrm{c}\) (a) \([\mathrm{x} /(1+\log \mathrm{x})]\) (b) \(x(1+\log x)\) (c) \([\mathrm{x} /(\log \mathrm{x})]\) (d) \(x \log x+x^{-1}\)
\(\int\left[\mathrm{dx} /\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}+2\right)\right]=\) \(+c\) (a) \(-\left[1 /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\) (b) \(\left[1 /\left(e^{x}+1\right)\right]\) (c) \(-\left[2^{\mathrm{x}} /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\)
\(\int[\mathrm{dx} / \sqrt{(x-4)(x-7)}]=+c \quad(4
\(\int(x+4)(x+3)^{7} d x=\) (a) \(\left[(x+3)^{9} / 9\right]-\left[(x+3)^{8} / 8\right]\) (b) \(\left[\left\\{(x+3)^{8}(8 x+33)\right\\} / 72\right]\) (c) \(\left[\left\\{(x+3)^{8}(8 x+33)\right\\} / 72\right]\) (d) \(\left[(x+3)^{8} / 8\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.