Chapter 11: Problem 928
If \(\int[\mathrm{dx} /(5+4 \cos \mathrm{x})]=\operatorname{Ptan}^{-1}[\\{\tan (\mathrm{x} / 2)\\} / 3]+\mathrm{c}\) then \(\mathrm{P}\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \((1 / 3)\) (d) \((2 / 3)\)
Chapter 11: Problem 928
If \(\int[\mathrm{dx} /(5+4 \cos \mathrm{x})]=\operatorname{Ptan}^{-1}[\\{\tan (\mathrm{x} / 2)\\} / 3]+\mathrm{c}\) then \(\mathrm{P}\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \((1 / 3)\) (d) \((2 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(I=\int\left[\left(x^{3} d x\right) /\left\\{\sqrt{\left. \left.\left(1+x^{8}\right)\right\\}\right]}\right.\right.\) (a) \(\log \mid x^{4}+\sqrt{\left(1+x^{8}\right) \mid+c}\) (b) \(\log \mid \sqrt{\left(x^{8}+1\right) \mid+c}\) (c) \((1 / 4) \log \mid \mathrm{x}^{4}+\sqrt{\left(1+\mathrm{x}^{8}\right) \mid+\mathrm{c}}\) (d) none of these
\(\int\left[\sqrt{(1-\sin \mathrm{x}) /(1+\cos \mathrm{x})] \mathrm{e}^{(-\mathrm{x} / 2)} \mathrm{dx}=}+\mathrm{c}\right.\) (a) \(e^{[(-x) / 2]} \sec (x / 2)\) (b) \(-\mathrm{e}^{[(-\mathrm{x}) / 2]} \sec (\mathrm{x} / 2)\) (c) \(-2 \mathrm{e}^{[(-\mathrm{x}) / 2]} \sec (\mathrm{x} / 2)\) (d) \(2 \mathrm{e}^{[(-\mathrm{x}) / 2]} \sec (\mathrm{x} / 4)\)
If \(\int[\\{(-\sin x+\cos x) d x\\}\) \(/\left\\{(\sin x+\cos x) \sqrt{\left. \left.\left(\sin x \cos x+\sin ^{2} x \cos ^{2} x\right)\right\\}\right]}=\operatorname{cosec}^{-1}[f(x)]+c\right.\) then \(\mathrm{f}(\mathrm{x})=\) (a) \(\sin 2 \mathrm{x}+1\) (b) \(1-\sin 2 x\) (c) \(\sin 2 x-1\) (d) \(\cos 2 \mathrm{x}+1\)
\(\int \operatorname{cosec}^{3} x d x=\ldots+c\) (a) \(-(1 / 2) \operatorname{cosec} x \cot x+(1 / 2) \log |(\operatorname{cosec} x-\cot x)|\) (b) \(-(1 / 2) \operatorname{cosec} x \cot x\) (c) \((1 / 2) \operatorname{cosec} x \cot x+(1 / 2) \log |(\operatorname{cosec} x-\cot x)|\) (d) \((1 / 2) \operatorname{cosec} x \cot x-(1 / 2) \log \mid(\operatorname{cosec} x-\cot x)\)
\(\int \sqrt{(1+\operatorname{cosec} x d x)}=\ldots\) (a) \(2 \sin ^{-1}(\sqrt{\cos } \mathrm{x})\) (b) \(2 \cos ^{-1}(\sqrt{\sin } \mathrm{x})\) (c) \(\sin ^{-1}(2 \sin x-1)\) (d) \(2 \cos ^{-1}(\sqrt{\cos x})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.