\(\int\left[(x+1) d x /\left\\{x\left(1+x e^{x}\right)^{2}\right\\}\right]=\)
(a) \(\log \left(\mathrm{xe}^{\mathrm{x}}\right)
/\left(1+\mathrm{xe}^{\mathrm{x}}\right) \mid-\left[1
/\left(1+\mathrm{xe}^{\mathrm{x}}\right)\right]\)
(b) \(\log \left|\left(x e^{x}\right) /\left(1+x e^{x}\right)\right|-\left[1
/\left(1+x e^{x}\right)\right]\)
(c) \(\log \left(\mathrm{xe}^{\mathrm{x}}\right)
/\left(1+\mathrm{xe}^{\mathrm{x}}\right) \mid+\left[1
/\left(1+\mathrm{xe}^{\mathrm{x}}\right)\right]\)
(d) \(\log \left|\left(1+x e^{x}\right) /\left(x e^{x}\right)\right|-\left[1
/\left(1+x e^{x}\right)\right]\)