\(\int[\mathrm{dx} / \sqrt{(x-4)(x-7)}]=+c \quad(4

Short Answer

Expert verified
The short answer is: \[\boxed{2 \sin^{-1}\left(\sqrt{\frac{x - 4}{3}}\right) + C}\]

Step by step solution

01

Identify the integral

Given the integral: \[\int\frac{dx}{\sqrt{(x-4)(x-7)}}\]
02

Perform a substitution

Let \(u = \frac{x - 4}{3}\), which implies \(x = 3u + 4\). Then differentiate x in terms of u: \[\frac{dx}{du} = 3, \quad\Rightarrow dx = 3 du\] Now, substitute the value of x and dx in the integral: \[\int\frac{3 du}{\sqrt{(3u)(3u-3)}}\]
03

Simplify the integrand

The expression becomes: \[\int\frac{3 du}{\sqrt{9u(3u-3)}} = \int\frac{3 du}{\sqrt{9u^2(3-u)}}\] Now, factor out the 9 and take the square root: \[\int\frac{3 du}{3 \sqrt{u(3-u)}}\] Cancel out the 3: \[\int\frac{du}{\sqrt{u(3-u)}}\]
04

Apply an inverse trigonometric function identity

The given integral reminds us of the following identity: \[\frac{d}{dx}\sin^{-1}\left(\frac{x}{a}\right) = \frac{1}{\sqrt{a^2 - x^2}}\] Comparing the integrand, we see that: \[a^2 - x^2 = 3 - u \quad\Rightarrow (1/3)(a^2 - u^2) = (1/3)(3 - u)\] Setting \(a^2 = 3\), we have: \[\int\frac{du}{\sqrt{(1/3)(a^2 - u^2)}}\] Which is similar to the identity, so we can use the inverse sine function.
05

Find the antiderivative

From the identity, we have: \[2 \sin^{-1}\left(\frac{u}{\sqrt{3}}\right) + C\] Now, substitute back for x: \[2 \sin^{-1}\left(\frac{\frac{x - 4}{3}}{\sqrt{3}}\right) + C = 2 \sin^{-1}\left(\sqrt{\frac{x - 4}{3}}\right) + C\] This matches option (a) \[\boxed{2 \sin^{-1}\left(\sqrt{\frac{x - 4}{3}}\right) + C}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\int\left[\left(3^{x}-1\right) /\left(3^{x}+1\right)\right] d x=k \log \left|3^{(x / 2)}+3^{-(x / 2)}\right|+c\) then \(k=\) (a) \(\log _{3} \mathrm{e}\) (b) \(\log _{\mathrm{e}} 3\) (c) \(2 \log _{3} \mathrm{e}\) (d) \(2 \log _{\mathrm{e}} 3\)

\(\int(x+4)(x+3)^{7} d x=\) (a) \(\left[(x+3)^{9} / 9\right]-\left[(x+3)^{8} / 8\right]\) (b) \(\left[\left\\{(x+3)^{8}(8 x+33)\right\\} / 72\right]\) (c) \(\left[\left\\{(x+3)^{8}(8 x+33)\right\\} / 72\right]\) (d) \(\left[(x+3)^{8} / 8\right]\)

\(\int\left[\left(x^{2}+1\right) /\left(x^{4}-x^{2}+1\right)\right] d x=\ldots+c\) (a) \(\tan ^{-1}\left[\left(\mathrm{x}^{2}+1\right) / \mathrm{x}\right]\) (b) \(\tan ^{-1}\left[\left(x^{2}-1\right) / x\right]\) (c) \(\tan ^{-1}(\mathrm{x}+1)\) (d) \(\tan ^{-1}(\mathrm{x}-1)\)

\(\int\left[\left(x^{2} d x\right) /\left\\{\left(x^{2}+2\right)\left(x^{2}+3\right)\right\\}\right]=\ldots\) (a) \(\sqrt{3} \tan ^{-1}(\mathrm{x} / \sqrt{3})+\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\) (b) \(\sqrt{3} \tan ^{-1}(\mathrm{x} / \sqrt{3})-\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\) (c) \(\tan ^{-1}(\mathrm{x} / \sqrt{3})+\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\) (d) \(\tan ^{-1}(\mathrm{x} / \sqrt{3})-\sqrt{2} \tan ^{-1}(\mathrm{x} / \sqrt{2})\)

\(\left.\int \sqrt{[}\left(\sin x-\sin ^{3} x\right) /\left(1-\sin ^{3} x\right)\right] d x=\ldots\) (a) \((2 / 3) \sin ^{-1}\left(\sin ^{3 / 2} x\right)\) (b) \((2 / 3) \sin ^{-1}\left(\cos ^{3 / 2} \mathrm{x}\right)\) (c) \([(-3) / 2] \sin ^{-1}\left(\sin ^{3 / 2} x\right)\) (d) \((3 / 2) \sin ^{-1}\left(\sin ^{3 / 2} x\right)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free