Chapter 11: Problem 974
\(\int[\mathrm{dx} / \sqrt{(x-4)(x-7)}]=+c \quad(4
Chapter 11: Problem 974
\(\int[\mathrm{dx} / \sqrt{(x-4)(x-7)}]=+c \quad(4
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{f}(\mathrm{x})=\cos \mathrm{x}-\cos ^{2} \mathrm{x}+\cos ^{3} \mathrm{x}-\cos ^{4} \mathrm{x}+\underline{\mathrm{x}}+\) then \(\int f(x) d x=\) \(+c\) (a) \(\tan (\mathrm{x} / 2)\) (b) \(x+\tan (x / 2)\) (b) \(x-(1 / 2) \tan (x / 2)\) (d) \(x-\tan (x / 2)\)
\(\int\left[\left(x^{4}+1\right) /\left\\{x\left(x^{2}+1\right)^{2}\right\\}\right] d x=A \log |x|+\left[B /\left(1+x^{2}\right)\right]+c\) then \(\mathrm{A}=\underline{\mathrm{B}}=\) (a) \(\mathrm{A}=1 ; \overline{\mathrm{B}=-1}\) (b) \(\mathrm{A}=-1 ; \mathrm{B}=1\) (c) \(\mathrm{A}=1 ; \mathrm{B}=1\) (d) \(A=-1 ; B=-1\)
If \(\int[\mathrm{dx} /(5+4 \cos \mathrm{x})]=\operatorname{Ptan}^{-1}[\\{\tan (\mathrm{x} / 2)\\} / 3]+\mathrm{c}\) then \(\mathrm{P}\) (a) \((3 / 2)\) (b) \((1 / 2)\) (c) \((1 / 3)\) (d) \((2 / 3)\)
\(I=\int[1 /\\{(x-4) \sqrt{(x-2)\\}}] d x=f(x)+c\) then \(f(x)\) is (a) \((1 / \sqrt{2}) \log |[\\{\sqrt{(x-2)}-\sqrt{2}\\} /\\{\sqrt{(x-2)}+\sqrt{2}\\}]|+c\) (b) \((1 / 2) \log \mid[\\{\sqrt{x}-2)-\sqrt{2}\\} /\\{\sqrt{(x-2)}+\sqrt{2}\\}] \mid+c\) (c) \((1 / 2 \sqrt{2}) \log \mid[\\{\sqrt{(x-2)}+\sqrt{2}\\} /\\{\sqrt{(x-2)}-\sqrt{2}\\}]+c\) (d) none of these
\(\int\left[\left(x^{2}+1\right) /\left(x^{2}\right)\right] e^{[(\\{x\\} 2-1) / x]} d x=\ldots\) (a) \(\mathrm{e}^{[\mathrm{x}-(1 / \mathrm{x})]}\) (b) \(e^{[x+(1 / x)]}\) (c) \(e^{[(1 / x)-x]}\) (d) \(\mathrm{e}^{[-\mathrm{x}-(1 / \mathrm{x})]}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.