If \(\int[(2012 \mathrm{x}+2013) /(2013 \mathrm{x}+2012)] \mathrm{dx}\) \(=[(2012) /(2013)] \mathrm{x}+\mathrm{klog}|2013 \mathrm{x}+2012|+\mathrm{c}\) then \(\mathrm{k}=\) (a) \([(4025) /(2013)]\) (b) \(\left[(4025) /(2013)^{2}\right]\) (c) \([(-4025) /(2013)]\) (d) \(\left[(-4025) /(2013)^{2}\right]\)

Short Answer

Expert verified
The value of \(k\) is \(\left[(4025) /(2013)^{2}\right]\), so the correct option is (b).

Step by step solution

01

Identify the given function

The given function to integrate is \(\frac{2012x + 2013}{2013x + 2012}\).
02

Rewrite the function as a sum of two terms

We rewrite the function \(\frac{2012x + 2013}{2013x + 2012}\) as a sum of two terms: \(\frac{2012x}{2013x + 2012} + \frac{2013}{2013x + 2012}\).
03

Recognize the integral of the first term

Looking at the first term of our sum, \(\frac{2012x}{2013x + 2012}\), we can recognize this as the derivative of \(\frac{2012}{2013}\)x. Taking the integral of this term, we indeed obtain \(\frac{2012}{2013}\)x.
04

Apply substitution method to the second term

Now let's integrate the second term of our sum, \(\frac{2013}{2013x + 2012}\). To do this, let's use the substitution method: Let \(u = 2013x + 2012\) then the derivative of \(u\) with respect to \(x\) is: \(\frac{\mathrm{d}u}{\mathrm{d}x} = 2013\) Now we rewrite our integral: \(\int \frac{2013}{2013x + 2012} \mathrm{dx} = \int \frac{1}{u} \frac{\mathrm{d}u}{2013}\)
05

Solve the integral for the second term

Now we can integrate the second term: \(\int \frac{1}{u} \frac{\mathrm{d}u}{2013} = \frac{1}{2013} \int \frac{1}{u} \mathrm{d}u = \frac{1}{2013} \ln |u| + C'\)
06

Substitute back for u

Now substitute back for \(u\): \(\frac{1}{2013} \ln |2013x + 2012| + C'\)
07

Combine integrals of both terms

The integral of the given function is the sum of the integrals of the two terms: \[\int \frac{2012x + 2013}{2013x + 2012} \mathrm{dx} = \frac{2012}{2013}x + \frac{1}{2013} \ln |2013x + 2012| + C\]
08

Compare with the given equation and find k

The given equation is: \[(2012) /(2013)] \mathrm{x}+\mathrm{klog}|2013 \mathrm{x}+2012|+\mathrm{c}\] Comparing coefficients, we have: \(k = \frac{1}{2013}\)
09

Find the correct answer

The correct answer would be: (b) \(\left[(4025) /(2013)^{2}\right]\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\int\left[\left(2^{\\{1 /(x) 2\\}}\right) \mathrm{d} x\right]=k 2^{\\{1 /(x) 2\\}}+c\) then \(k=\) (a) \(-[1 /(2 \log 2)]\) (b) \(-\log 2\) (c) \(-2\) (d) \(-(1 / 2)\)

\(\int \mathrm{e}^{\mathrm{x}}\left[(1-\mathrm{x}) /\left(1+\mathrm{x}^{2}\right)\right]^{2} \mathrm{dx}=\underline{\mathrm{c}}\) (a) \(e^{x}\left(1+x^{2}\right)\) (b) \(\left[\mathrm{e}^{\mathrm{x}} /\left(1+\mathrm{x}^{2}\right)\right]\) (c) \(\mathrm{e}^{\mathrm{x}}\left[(1-\mathrm{x}) /\left(1+\mathrm{x}^{2}\right)\right]\) (d) \(e^{x}\left(1-x^{2}\right)\)

\(\left.\int \sqrt{[}\left(\sin x-\sin ^{3} x\right) /\left(1-\sin ^{3} x\right)\right] d x=\ldots\) (a) \((2 / 3) \sin ^{-1}\left(\sin ^{3 / 2} x\right)\) (b) \((2 / 3) \sin ^{-1}\left(\cos ^{3 / 2} \mathrm{x}\right)\) (c) \([(-3) / 2] \sin ^{-1}\left(\sin ^{3 / 2} x\right)\) (d) \((3 / 2) \sin ^{-1}\left(\sin ^{3 / 2} x\right)\)

\(\int[(\tan \mathrm{x}) /\\{\sqrt{(\cos \mathrm{x})\\}]}=\) \(+c\) (a) \([(+2) / \sqrt{(\cos x)}]\) (b) \(-[1 / \sqrt{(\cos x)]}\) (c) \([(-2) /\\{3 \sqrt{(\cos x})\\}]\) (d) \([(-3) /\\{2 \sqrt{(\cos x})\\}]\)

If \(\int\left[\mathrm{dx} /\left(1-\cos ^{4} \mathrm{x}\right)\right]=-(1 / 2) \cot \mathrm{x}+\operatorname{Atan}^{-1}[\mathrm{f}(\mathrm{x})]+\mathrm{c}\) then \(\mathrm{A}=\underline{ }\) and \(\mathrm{f}(\mathrm{x})=\) (a) \(\overline{+(\sqrt{2} / 4)}\) and \([1 /(\sqrt{2} \cot \mathrm{x})]\) (b) \(\sqrt{2}\) and \(\sqrt{2} \tan \mathrm{x}\) (c) \(-\sqrt{2}\) and \(\sqrt{2} \tan \mathrm{x}\) (d) \([1 /(2 \sqrt{2})]\) and \(\sqrt{2} \tan \mathrm{x}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free