Chapter 11: Problem 977
If \(\int[(\cos 9 x+\cos 6 x) /(2 \cos 5 x-1)] d x=k_{1} \sin 4 x+k_{2} \sin x+c\) then \(4 \mathrm{k}_{1}+\mathrm{k}_{2}=\) (a) 1 (b) 2 (c) 4 (d) 5
Chapter 11: Problem 977
If \(\int[(\cos 9 x+\cos 6 x) /(2 \cos 5 x-1)] d x=k_{1} \sin 4 x+k_{2} \sin x+c\) then \(4 \mathrm{k}_{1}+\mathrm{k}_{2}=\) (a) 1 (b) 2 (c) 4 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int e^{x}\left[\left(x^{3}-x-2\right) /\left(x^{2}+1\right)^{2}\right] d x=\) (a) \(e^{x}\left[(2 x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(x+1) /\left(x^{2}+1\right)\right]\) (c) \(e^{x}\left[(x-1) /\left(x^{2}+1\right)\right]\) (b) \(e^{x}\left[(2 x-2) /\left(x^{2}+1\right)\right]\)
\(\left.\int\left[\mathrm{dx} / \sqrt{\\{} \cos ^{3} \mathrm{x} \sin (\mathrm{x}+\alpha)\right\\}\right]=\mathrm{c}\) (a) \(2 \sec \alpha \sqrt{(\sin \alpha+\cos \alpha \tan x)}\) (b) \(\sec \alpha \sqrt{(\sin \alpha+\cos \alpha \tan \alpha)}\) (c) \(\sqrt{(\sin \alpha+\cos \alpha \tan \mathrm{x})}\) (d) \(2 \sqrt{(\sin \alpha+\cos \alpha \tan x)}\)
\(\int\left[(x+1) d x /\left\\{x\left(1+x e^{x}\right)^{2}\right\\}\right]=\) (a) \(\log \left(\mathrm{xe}^{\mathrm{x}}\right) /\left(1+\mathrm{xe}^{\mathrm{x}}\right) \mid-\left[1 /\left(1+\mathrm{xe}^{\mathrm{x}}\right)\right]\) (b) \(\log \left|\left(x e^{x}\right) /\left(1+x e^{x}\right)\right|-\left[1 /\left(1+x e^{x}\right)\right]\) (c) \(\log \left(\mathrm{xe}^{\mathrm{x}}\right) /\left(1+\mathrm{xe}^{\mathrm{x}}\right) \mid+\left[1 /\left(1+\mathrm{xe}^{\mathrm{x}}\right)\right]\) (d) \(\log \left|\left(1+x e^{x}\right) /\left(x e^{x}\right)\right|-\left[1 /\left(1+x e^{x}\right)\right]\)
\(\int \operatorname{cosec}[\mathrm{x}-(\pi / 6)] \operatorname{cosec}[\mathrm{x}-(\pi / 3)] \mathrm{d} \mathrm{x}\) \(=\mathrm{k}[\log |\sin \\{\mathrm{x}-(\pi / 6)\\}|-\log |\sin \\{\mathrm{x}-(\pi / 3)\\}|]+\mathrm{c}\) then \(\mathrm{k}=\) (a) 2 (b) \(-2\) (c) \((\sqrt{3} / 2)\) (d) \((2 \overline{\sqrt{3})}\)
If \(\int\left(x^{30}+x^{20}+x^{10}\right)\left(2 x^{20}+3 x^{10}+6\right)^{(1 / 10)} d x\) \(=\mathrm{k}\left(2 \mathrm{x}^{30}+3 \mathrm{x}^{20}+6 \mathrm{x}^{10}\right)^{(11 / 10)}+\mathrm{c}\) then \(\mathrm{k}=\) (c) \((1 / 66)\) (a) \((1 / 60)\) (b) \(-(1 / 60)\) (c) \(-(1 / 66)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.