Chapter 11: Problem 977
If \(\int[(\cos 9 x+\cos 6 x) /(2 \cos 5 x-1)] d x=k_{1} \sin 4 x+k_{2} \sin x+c\) then \(4 \mathrm{k}_{1}+\mathrm{k}_{2}=\) (a) 1 (b) 2 (c) 4 (d) 5
Chapter 11: Problem 977
If \(\int[(\cos 9 x+\cos 6 x) /(2 \cos 5 x-1)] d x=k_{1} \sin 4 x+k_{2} \sin x+c\) then \(4 \mathrm{k}_{1}+\mathrm{k}_{2}=\) (a) 1 (b) 2 (c) 4 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\left[\left(\mathrm{e}^{\mathrm{x}}-1\right) /\left(\mathrm{e}^{\mathrm{x}}+1\right)\right]\left[\mathrm{d} \mathrm{x} / \sqrt{ \left.\left(\mathrm{e}^{\mathrm{x}}+1+\mathrm{e}^{-\mathrm{x}}\right)\right]}=\mathrm{c}\right.\) (a) \(\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\) (b) \(\sec ^{-1}\left(e^{x}+e^{-x}\right)\) (c) \(2 \tan ^{-1}\left(\mathrm{e}^{(\mathrm{x} / 2)}+\mathrm{e}^{-(\mathrm{x} / 2)}\right)\) (d) \(2 \sec ^{-1}\left(e^{(x / 2)}+e^{-(x / 2)}\right)\)
\(\int\left[(\mathrm{d} \mathrm{x}) /(2 \sin \mathrm{x}+3 \cos \mathrm{x})^{2}\right]=\underline{\mathrm{c}}\) (a) \(-[1 /(2 \tan x+3)]\) (b) \([\overline{1 /(2 \tan x+3})]\) (c) \(-[1 /\\{2(2 \tan \mathrm{x}+3)\\}]\) (d) \([1 /\\{2(2 \tan \mathrm{x}+3)\\}]\)
\(\int \sqrt{(1+\operatorname{cosec} x d x)}=\ldots\) (a) \(2 \sin ^{-1}(\sqrt{\cos } \mathrm{x})\) (b) \(2 \cos ^{-1}(\sqrt{\sin } \mathrm{x})\) (c) \(\sin ^{-1}(2 \sin x-1)\) (d) \(2 \cos ^{-1}(\sqrt{\cos x})\)
\(\int\left[(\log \mathrm{x}) /(1+\log \mathrm{x})^{2}\right] \mathrm{d} \mathrm{x}=\underline{ }+\mathrm{c}\) (a) \([\mathrm{x} /(1+\log \mathrm{x})]\) (b) \(x(1+\log x)\) (c) \([\mathrm{x} /(\log \mathrm{x})]\) (d) \(x \log x+x^{-1}\)
\(\int(x-1) e^{-x} d x=\square+c\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.