Chapter 12: Problem 1005
The value of the integral \({ }^{5} \int_{-5}(\mathrm{x}-[\mathrm{x}]) \mathrm{dx}\) is \(\ldots \ldots\) (a) 0 (b) 5 (c) 10 (d) 15
Chapter 12: Problem 1005
The value of the integral \({ }^{5} \int_{-5}(\mathrm{x}-[\mathrm{x}]) \mathrm{dx}\) is \(\ldots \ldots\) (a) 0 (b) 5 (c) 10 (d) 15
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(a<0
The area enclosed between the curves \(y=\log _{e}(x+e)\) and the coordinate axes is...... (a) 1 (b) 4 (c) 2 (d) 3
\((\pi / 2) \int_{0} \mathrm{e}^{(\sin )-1(x)} \cdot \mathrm{e}^{(\tan )-1[\sqrt\\{1-(x) 2\\} / x]} d x\) is equal to ...... (a) \((\pi / 2)\) (b) \((\pi / 2) \mathrm{e}^{(\pi / 2)}\) (c) \((\pi / 4) \mathrm{e}^{(\pi / 2)}\) (d) \(\mathrm{e}^{(\pi / 2)}\)
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
The value of the integral \(\left.\left.{ }^{1} \int_{0} \log [\sqrt{(} 1-\mathrm{x})+\sqrt{(} 1+\mathrm{x}\right)\right] \mathrm{d} \mathrm{x}\) is \(\ldots \ldots\) (a) \((1 / 2)[\log (2)-(1 / 2)+(\pi / 4)]\) (b) \((1 / 2)[\log 2-1+(\pi / 2)]\) (c) \((1 / 3)[\log 4-1+(\pi / 4)]\) (d) \((1 / 4)[\log 3-1+(\pi / 2)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.