Chapter 12: Problem 1005
The value of the integral \({ }^{5} \int_{-5}(\mathrm{x}-[\mathrm{x}]) \mathrm{dx}\) is \(\ldots \ldots\) (a) 0 (b) 5 (c) 10 (d) 15
Chapter 12: Problem 1005
The value of the integral \({ }^{5} \int_{-5}(\mathrm{x}-[\mathrm{x}]) \mathrm{dx}\) is \(\ldots \ldots\) (a) 0 (b) 5 (c) 10 (d) 15
All the tools & learning materials you need for study success - in one app.
Get started for free\((1 / e) \int_{1}[(\log t) /(1+t)] d t+e \int_{1}[(\log t) /(1+t)] d t\) is equal to...... (a) \(\mathrm{e}\) (b) \((1 / e)\) (c) 2 (d) \((1 / 2)\)
The value of the integral \((\pi / 2)]_{0}\left[\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)\right] d x\) is \(\ldots \ldots\) (c) \(\left(\pi^{2} / 4\right)\) (a) \((\pi / 4)\) (b) \(\pi\) (d) \(\left(\pi^{2} / 2\right)\)
The value of the integral \(\pi \int_{-\pi}\left[\left(\cos ^{2} x\right) /\left(1+3^{x}\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
\((\pi / 4) \int_{0} \log (\cot 2 x)^{\sin 4 x} d x\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 8)\) (d) \((\pi / 2)\)
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.