Chapter 12: Problem 1012
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
Chapter 12: Problem 1012
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \((\pi / 2)]_{0}\left[\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)\right] d x\) is \(\ldots \ldots\) (c) \(\left(\pi^{2} / 4\right)\) (a) \((\pi / 4)\) (b) \(\pi\) (d) \(\left(\pi^{2} / 2\right)\)
\( \log 3 \int_{\log (1 / 3)} 2^{(\mathrm{x}) 2} \cdot \mathrm{x}^{3} \mathrm{~d} \mathrm{x}\) is equal to...... (a) 0 (b) \(\log 3\) (c) \(-\log 3\) (d) \(\log 2\)
\((\pi / 2) \int_{[(-\pi) / 2]} \sqrt{\left(\cos x-\cos ^{3} x\right) d x}\) is equal to....... (a) \(-(1 / 3)\) (b) \(-(1 / 4)\) (c) \(-(2 / 3) \quad\) (d) \(+(4 / 3)\)
\(1\mid={ }^{1} \int_{-1}\left(x^{7}+\cos ^{-1} x\right) d x\) then \(\cos \mid\) is equal to....... (a) 1 (b) 0 (c) \(-1\) (d) \((1 / 2)\)
\( \quad a \int_{-a}[\\{(|x+a|) /(x+a)\\}+\\{(|x-a|) /(x-a)\\}] d x\) is equal to \(\ldots \ldots\) (where \(a>0)\) (a) 0 (b) a (c) \(2 \mathrm{a}\) (d) \(4 \mathrm{a}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.