Chapter 12: Problem 1012
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
Chapter 12: Problem 1012
\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \(\pi \int_{-\pi}\left[\left(\cos ^{2} x\right) /\left(1+3^{x}\right)\right] d x\) is \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 2)\) (d) \(\pi\)
The value of the integral \((\pi / 2)]_{0}\left[\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)\right] d x\) is \(\ldots \ldots\) (c) \(\left(\pi^{2} / 4\right)\) (a) \((\pi / 4)\) (b) \(\pi\) (d) \(\left(\pi^{2} / 2\right)\)
The area enclosed between the curves \(y=\log _{e}(x+e)\) and the coordinate axes is...... (a) 1 (b) 4 (c) 2 (d) 3
The value of \((e)^{2} \int_{e}[d x /(\log x)]-2 \int_{1}\left(e^{x} / x\right) d x\) is...... (a) \(\mathrm{e}^{2}\) (b) e (c) \((1 / e)\) (d) 0
\((\pi / 4) \int_{0} \log (\cot 2 x)^{\sin 4 x} d x\) is equal to \(\ldots \ldots\) (a) 0 (b) \((\pi / 4)\) (c) \((\pi / 8)\) (d) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.