\(\quad 12-1012:(\pi / 9) \int_{0}(\tan x+\tan 2 x+\tan 3 x+\tan x \cdot \tan 2 x \cdot \tan 3 x) d x\) is equal to....... (a) \((1 / 3) \log 2\) (b) \(\log ^{3} \sqrt{4}\) (c) \(3 \log 2\) (d) \(4 \log \sqrt{3}\)

Short Answer

Expert verified
The answer cannot be determined from the given information.

Step by step solution

01

Break the integral into parts

Sum and product of integrals can be expressed as multiple integrals with same limits: \[12 - 1012\left(\frac{\pi}{9}\right)\int_{0}^{\pi/9}(\tan x+\tan 2x+\tan 3x+\tan x \cdot \tan 2x \cdot \tan 3x) dx\] \[= 12 - 1012\left(\frac{\pi}{9}\right)\left[\int_{0}^{\pi/9}\tan xdx+\int_{0}^{\pi/9}\tan2xdx+\int_{0}^{\pi/9}\tan3xdx+\int_{0}^{\pi/9}\tan x \cdot \tan 2x \cdot \tan 3x dx\right]\]
02

Evaluate the individual integrals

Using antiderivative formulas, we can evaluate each integral: \[\int_{0}^{\pi/9}\tan x dx = \log|\sec x| \Big|_0^{\pi/9}\] \[\int_{0}^{\pi/9}\tan2x dx = \frac{1}{2}\log|\sec 2x| \Big|_0^{\pi/9}\] \[\int_{0}^{\pi/9}\tan3x dx = \frac{1}{3}\log|\sec 3x| \Big|_0^{\pi/9}\] For the product term, use the triple-angle formula for the tangent: \[\tan 3x = 3\tan x -\tan^3 x\] Rearrange it as: \[\tan x\tan 2x\tan 3x = (\tan^3 x)\left(\frac{\tan 3x}{\tan x}\right) = \tan^3x (3-\tan^3x)\] Now evaluate this integral: \[\int_{0}^{\pi/9}\tan x \cdot \tan 2x \cdot \tan 3x dx = \int_{0}^{\pi/9}(\tan^3x(3-\tan^3x)) dx\] This last integral is complicated to evaluate directly, but notice that at \(x = \pi/9\), both \(\tan x\) and \(\tan 2x\) are equal to 1, so their product with any other term will still be 0. Therefore, the integral is zero: \[\int_{0}^{\pi/9}\tan x \cdot \tan 2x \cdot \tan 3x dx = 0\]
03

Substitute integral values into the original expression

Substitute the evaluated integrals: \[12 - 1012\left(\frac{\pi}{9}\right)\left[ \log|\sec x| \Big|_0^{\pi/9} + \frac{1}{2}\log|\sec 2x| \Big|_0^{\pi/9} + \frac{1}{3}\log|\sec 3x| \Big|_0^{\pi/9} + 0 \right]\] Now evaluate the difference at the limits: \[12 - 1012\left(\frac{\pi}{9}\right)\left[ (\log|\sec(\pi/9)| - \log|\sec0|) + \frac{1}{2}(\log|\sec(2\pi/9)| - \log|\sec0|) + \frac{1}{3}(\log|\sec(\pi/3)| - \log|\sec0|) \right]\] Evaluate the secant values and simplify the logarithms: \(12 - 1012\left(\frac{\pi}{9}\right)\left[ \log2 + \frac{1}{2}\log2 + \frac{1}{3}(\log2 + \log3 - \log1) \right]\) Combine all logarithm terms: \[12 - 1012\left(\frac{\pi}{9}\right)\left[\log2\left(1 + \frac{1}{2}\right) + \frac{1}{3}\log6\right]\] \[12 - 1128\log2 - 376\log3\] Now check the options: (a) \(\frac{1}{3}\log2 \approx 0.23\) (b) \(\log ^{3} \sqrt{4} \approx 0.602\) (c) \(3\log2 \approx 2.08\) (d) \(4\log\sqrt{3} \approx 2.191\) Our result, \(12 - 1128\log2 - 376\log3\), does not match any of the given options. Therefore, the problem might be ill-posed or we used an incorrect technique. Either way, the answer cannot be determined from the given information.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free