Chapter 12: Problem 1014
\(1\mid={ }^{1} \int_{-1}\left(x^{7}+\cos ^{-1} x\right) d x\) then \(\cos \mid\) is equal to....... (a) 1 (b) 0 (c) \(-1\) (d) \((1 / 2)\)
Chapter 12: Problem 1014
\(1\mid={ }^{1} \int_{-1}\left(x^{7}+\cos ^{-1} x\right) d x\) then \(\cos \mid\) is equal to....... (a) 1 (b) 0 (c) \(-1\) (d) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area enclosed by the parabola \(x^{2}=4\) by and its latusrectum is \((4 / 3)\) then \(b>0\) is equal to....... (a) 2 (b) \(\sqrt{2}\) (c) 1 (d) 4
The value of the integral \(\left.\left.{ }^{1} \int_{0} \log [\sqrt{(} 1-\mathrm{x})+\sqrt{(} 1+\mathrm{x}\right)\right] \mathrm{d} \mathrm{x}\) is \(\ldots \ldots\) (a) \((1 / 2)[\log (2)-(1 / 2)+(\pi / 4)]\) (b) \((1 / 2)[\log 2-1+(\pi / 2)]\) (c) \((1 / 3)[\log 4-1+(\pi / 4)]\) (d) \((1 / 4)[\log 3-1+(\pi / 2)]\)
If \(a<0
\( \quad a \int_{-a}[\\{(|x+a|) /(x+a)\\}+\\{(|x-a|) /(x-a)\\}] d x\) is equal to \(\ldots \ldots\) (where \(a>0)\) (a) 0 (b) a (c) \(2 \mathrm{a}\) (d) \(4 \mathrm{a}\)
The area of the region bounded by the lines \(y=m x, x=1\), \(\mathrm{x}=2\) and \(\mathrm{x}\) -axis is \(6 \mathrm{Sq}\). unit then \(\mathrm{m}\) is....... (a) 1 (b) 2 (c) 3 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.