Chapter 12: Problem 1014
\(1\mid={ }^{1} \int_{-1}\left(x^{7}+\cos ^{-1} x\right) d x\) then \(\cos \mid\) is equal to....... (a) 1 (b) 0 (c) \(-1\) (d) \((1 / 2)\)
Chapter 12: Problem 1014
\(1\mid={ }^{1} \int_{-1}\left(x^{7}+\cos ^{-1} x\right) d x\) then \(\cos \mid\) is equal to....... (a) 1 (b) 0 (c) \(-1\) (d) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeif \(\mathrm{f}(\mathrm{x})=\mathrm{x} \int_{0} \log [(1-\mathrm{t}) /(1+\mathrm{t})] \mathrm{dt}\) then \(\mathrm{f}(1 / 2)-\mathrm{f}[(-1) / 2]\) is equals (a) 0 (b) \((1 / 2)\) (c) \([(-1) / 2]\) (d) 1
\( \quad a \int_{-a}[\\{(|x+a|) /(x+a)\\}+\\{(|x-a|) /(x-a)\\}] d x\) is equal to \(\ldots \ldots\) (where \(a>0)\) (a) 0 (b) a (c) \(2 \mathrm{a}\) (d) \(4 \mathrm{a}\)
\(\pi \int_{0}[(\sin 100 \mathrm{x}) /(\sin \mathrm{x})] \mathrm{d} \mathrm{x}\) is equal to \(\ldots \ldots\) (a) 0 (b) \(\pi\) (c) \((\pi / 2)\) (d) \(2 \pi\)
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
The parabolas \(\mathrm{y}^{2}=4 \mathrm{x}\) and \(\mathrm{x}^{2}=4 \mathrm{y}\) divide the square region bounded the lines \(x=4, y=4\) and the coordinate axes. If \(S_{1}\), \(\mathrm{S}_{2}, \mathrm{~S}_{3}\) are respectively the areas of these parts numbered from top to bottom then \(S_{1}: S_{2}: S_{3}\) is........ (a) \(1: 2: 3\) (b) \(2: 1: 2\) (c) \(3: 2: 3\) (d) \(1: 1: 1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.