Chapter 12: Problem 1019
\( \log 3 \int_{\log (1 / 3)} 2^{(\mathrm{x}) 2} \cdot \mathrm{x}^{3} \mathrm{~d} \mathrm{x}\) is equal to...... (a) 0 (b) \(\log 3\) (c) \(-\log 3\) (d) \(\log 2\)
Chapter 12: Problem 1019
\( \log 3 \int_{\log (1 / 3)} 2^{(\mathrm{x}) 2} \cdot \mathrm{x}^{3} \mathrm{~d} \mathrm{x}\) is equal to...... (a) 0 (b) \(\log 3\) (c) \(-\log 3\) (d) \(\log 2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe parabolas \(\mathrm{y}^{2}=4 \mathrm{x}\) and \(\mathrm{x}^{2}=4 \mathrm{y}\) divide the square region bounded the lines \(x=4, y=4\) and the coordinate axes. If \(S_{1}\), \(\mathrm{S}_{2}, \mathrm{~S}_{3}\) are respectively the areas of these parts numbered from top to bottom then \(S_{1}: S_{2}: S_{3}\) is........ (a) \(1: 2: 3\) (b) \(2: 1: 2\) (c) \(3: 2: 3\) (d) \(1: 1: 1\)
\(1 \int_{0} 3 \sqrt{\left(x^{3}-x^{4}\right) d x}\) is equal to....... (a) \((1 / 2)\) (b) \((3 / 7)\) (c) \((9 / 28)\) (d) \((29 / 28)\)
The area of the region bounded by the lines \(y=m x, x=1\), \(\mathrm{x}=2\) and \(\mathrm{x}\) -axis is \(6 \mathrm{Sq}\). unit then \(\mathrm{m}\) is....... (a) 1 (b) 2 (c) 3 (d) 4
The area bounded by the curves \(x^{2}=y\) and \(2 x+y-8=0\) and \(y\) -axis in the second quadrant is...... (a) 9 Sq. unit (b) 18 Sq. unit (c) \((80 / 3)\) Sq. unit (d) 36 Sq. unit
\(1\mid={ }^{1} \int_{-1}\left(x^{7}+\cos ^{-1} x\right) d x\) then \(\cos \mid\) is equal to....... (a) 1 (b) 0 (c) \(-1\) (d) \((1 / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.