Chapter 12: Problem 1019
\( \log 3 \int_{\log (1 / 3)} 2^{(\mathrm{x}) 2} \cdot \mathrm{x}^{3} \mathrm{~d} \mathrm{x}\) is equal to...... (a) 0 (b) \(\log 3\) (c) \(-\log 3\) (d) \(\log 2\)
Chapter 12: Problem 1019
\( \log 3 \int_{\log (1 / 3)} 2^{(\mathrm{x}) 2} \cdot \mathrm{x}^{3} \mathrm{~d} \mathrm{x}\) is equal to...... (a) 0 (b) \(\log 3\) (c) \(-\log 3\) (d) \(\log 2\)
All the tools & learning materials you need for study success - in one app.
Get started for free\( \quad a \int_{-a}[\\{(|x+a|) /(x+a)\\}+\\{(|x-a|) /(x-a)\\}] d x\) is equal to \(\ldots \ldots\) (where \(a>0)\) (a) 0 (b) a (c) \(2 \mathrm{a}\) (d) \(4 \mathrm{a}\)
\(R \rightarrow R\) and satisfies \(f(2)=-1, f^{\prime}(2)=4\) If \(3 \int_{2}(3-x) f^{\prime \prime}(x) d x=7\), then \(f(3)\) is equal to \(\ldots \ldots\) (a) 2 (b) 4 (c) 8 (d) 10
If \(a<0
The area of the region bounded by curves \(x^{2}+y^{2}=4, x=1\) \(\& x=\sqrt{3}\) is..... (a) \((\pi / 3)\) sq. unit (b) \((2 \pi / 3)\) sq. unit (c) \((5 \pi / 6)\) sq. unit (d) \((4 \pi / 3)\) sq. unit
The area bounded by the curves \(y=x^{2}\) and \(y=|x|\) is...... (a) 1 Sq. unit (b) 2 Sq. unit (c) \((1 / 3)\) Sq. unit (d) \((2 / 3)\) Sq. unit
What do you think about this solution?
We value your feedback to improve our textbook solutions.