Chapter 12: Problem 1034
If \(I_{n}=(\pi / 4) \int_{0} \tan ^{n} x d x\) then \({ }^{5} \sum_{r=1}\left[I /\left(I_{r}+I_{r+2}\right)\right]\) is equal to...... (a) 5 (b) 10 (c) 15 (d) 20
Chapter 12: Problem 1034
If \(I_{n}=(\pi / 4) \int_{0} \tan ^{n} x d x\) then \({ }^{5} \sum_{r=1}\left[I /\left(I_{r}+I_{r+2}\right)\right]\) is equal to...... (a) 5 (b) 10 (c) 15 (d) 20
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the integral \((\pi / 2) \int_{0} \sin \theta \cdot \log \sin \theta \cdot d \theta\) is..... (a) \(\log (2 / \mathrm{e})\) (b) \(\log 2 \mathrm{e}\) (c) \(\log 2\) (d) \(\log (\mathrm{e} / 2)\)
The value of the integral \((1 / 2) \int_{0}\left[d x /\left\\{(1-x)^{(3 / 2)} \sqrt{(1+x)\\}]}\right.\right.\) is.... (a) 0 (b) \((1 / 2)\) (c) \(\sqrt{3}-1\) (d) 2
K \int_{-K}|x| d x=(1 / K) ;\( where \)K \in N\( then \)K\( is \)\ldots \ldots \ldots$ (a) 0 (b) 1 (c) 2 (d) not possible
The area bounded by \(|x|-|y|=2\) is........ (a) 2 Sq. unit (b) 4 Sq. unit (c) 8 Sq. unit (d) \(16 \mathrm{Sq}\). unit
The value of the integral \(100 \pi \int_{0} \sqrt{(1-\cos 2 \mathrm{x}) \mathrm{d} x \text { is...... }}\) (a) \(50 \pi\) (b) \(100 \pi\) (c) \(100 \sqrt{2}\) (d) \(200 \sqrt{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.