Chapter 12: Problem 1034
If \(I_{n}=(\pi / 4) \int_{0} \tan ^{n} x d x\) then \({ }^{5} \sum_{r=1}\left[I /\left(I_{r}+I_{r+2}\right)\right]\) is equal to...... (a) 5 (b) 10 (c) 15 (d) 20
Chapter 12: Problem 1034
If \(I_{n}=(\pi / 4) \int_{0} \tan ^{n} x d x\) then \({ }^{5} \sum_{r=1}\left[I /\left(I_{r}+I_{r+2}\right)\right]\) is equal to...... (a) 5 (b) 10 (c) 15 (d) 20
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area enclosed by \(\mathrm{y}^{2}=32 \mathrm{x}\) and \(\mathrm{y}=\mathrm{m} \mathrm{x}(\mathrm{m}>0)\) is \((8 / 3)\) then \(\mathrm{m}\) is....... (a) 1 (b) 2 (c) 4 (d) \((1 / 4)\)
The area bounded by \(|x|-|y|=2\) is........ (a) 2 Sq. unit (b) 4 Sq. unit (c) 8 Sq. unit (d) \(16 \mathrm{Sq}\). unit
The value of the integral \({ }^{1} \int_{-1}\left(x^{2}+x\right)|x| d x\) is...... (a) 0 (b) \((1 / 2)\) (c) 1 (d) 2
\((\pi / 2) \int_{(\pi / 4)} \sqrt{(1-\sin 2 x) d x}\) is equal to \(\ldots \ldots \ldots\) (a) \(\sqrt{2}+1\) (b) \(\sqrt{2}-1\) (c) \(1-\sqrt{2}\) (d) 0
The value of the integral \({ }^{1} \int_{0} \log [(1 / x)-1] d x\) is..... (a) 1 (b) \((1 / 2)\) (c) 0 (d) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.