Chapter 12: Problem 1036
\(1 \int_{0} 3 \sqrt{\left(x^{3}-x^{4}\right) d x}\) is equal to....... (a) \((1 / 2)\) (b) \((3 / 7)\) (c) \((9 / 28)\) (d) \((29 / 28)\)
Chapter 12: Problem 1036
\(1 \int_{0} 3 \sqrt{\left(x^{3}-x^{4}\right) d x}\) is equal to....... (a) \((1 / 2)\) (b) \((3 / 7)\) (c) \((9 / 28)\) (d) \((29 / 28)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
The value of the integral \((\pi / 2)]_{0}\left[\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)\right] d x\) is \(\ldots \ldots\) (c) \(\left(\pi^{2} / 4\right)\) (a) \((\pi / 4)\) (b) \(\pi\) (d) \(\left(\pi^{2} / 2\right)\)
\(2 \pi \int_{0}(\sin x+|\sin x|) d x\) is equal to \(\ldots \ldots\) (a) 0 (b) 2 (c) \(-2\) (d) 4
\((\pi / 2) \int_{-(3 \pi / 2)}\left[(x+\pi)^{3}+\cos ^{2}(x+3 \pi)\right] \mathrm{d} x\) is equal to..... (a) \(\left(\pi^{3} / 8\right)\) (b) \((\pi / 2)\) (c) \((\pi / 4)-1\) (d) \((\pi / 4)+1\)
if \(\mathrm{f}(\mathrm{x})=\mathrm{x} \int_{0} \log [(1-\mathrm{t}) /(1+\mathrm{t})] \mathrm{dt}\) then \(\mathrm{f}(1 / 2)-\mathrm{f}[(-1) / 2]\) is equals (a) 0 (b) \((1 / 2)\) (c) \([(-1) / 2]\) (d) 1
\((1 / e) \int_{1}[(\log t) /(1+t)] d t+e \int_{1}[(\log t) /(1+t)] d t\) is equal to...... (a) \(\mathrm{e}\) (b) \((1 / e)\) (c) 2 (d) \((1 / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.